

Produto 3.2. Calibração da Rede de Simulação: Preparação da Rede de Simulação e **Checagem de Caminhos Mínimos**

Florianópolis

Setembro/2014

Sumário

1.	Int	rodu	ção	6
2.	Ap	reser	ntação das informações	7
	2.1.	Red	de de simulação	. 7
	2.	1.1.	Zoneamento	. 7
	2.	1.2.	Rede viária	. 9
	2.2.	Info	ormação levantada	11
	2.3.	Por	ntos de contagem	12
	2.	3.1.	Descrição e classificação	12
	2.4.	Pes	quisa de velocidades	18
3.	Vo	lume	e capacidade das vias	23
	3.1.	Hie	rarquia das vias para o PLAMUS	2 3
	3.2.	Vol	umes veiculares detectados	25
	3.3.	Cap	pacidade da rede viária	33
	3.	3.1.	Controle de tráfego	35
	3.4.	Cor	mparação entre volume e capacidade	47
4.	Ve	locida	ade e tempos de viagem	51
	4.1.	Res	ultado das pesquisas de velocidade	51
5.	An	álise	da relação volume / capacidade	59
	5.1.	Esti	imativa de demora pela saturação	60
	5.2.	Def	inição de parâmetros para as funções de fluxo-demora	62
6.	Pa	râme	tros de capacidade e velocidade	65

7.	Aná	álise dos tempos de percurso dos usuários	69
	7.1.	Estimativa de caminhos mínimos	69
	7.2.	Matrizes de tempo e distância de viagem	7 3
	7.2	.1. Tempo mínimo entre zonas	74
	7.2	.2. Distância mínima entre zonas	78
	7.3.	Análise de acessibilidade por zona	81

Índice de Figuras

Figura 1 - Zonas de tráfego na área central de Florianópolis	8
Figura 2 - Conjunto de zonas com centroides e conectores	9
Figura 3 - Rede viária e área de estudo por município	10
Figura 4 - Localização dos pontos de contagem na região de estudo	13
Figura 5 - Localização dos pontos de contagem na região de estudo, detalhe da região central.	14
Figura 6 - Localização dos pontos <i>Cordon Line</i> e <i>Screen Line</i>	14
Figura 7 - Mapa com trajetos percorridos na pesquisa de velocidade	21
Figura 8 - Mapa com trajetos percorridos na pesquisa de velocidade, detalhe do Centro	22
Figura 9 - Tipologia viária na região de estudo	24
Figura 10 - Hierarquia viária do centro de Florianópolis	25
Figura 11 - Volume total diário por ponto (ambos sentidos)	27
Figura 12 - Volume total diário por ponto por sentido	28
Figura 13 - Volume máximo observado por faixa efetiva, região central	30
Figura 14 - Volume máximo observado por faixa efetiva, região central da Ilha	31
Figura 15 - Volume máximo observado por faixa, região central continente	32
Figura 16 - Relação do tempo de verde <i>versus</i> o tempo de ciclo nas interseções estudadas	37
Figura 17 - Capacidade por tipologia	38
Figura 18 - Mapa da capacidade viária na região de estudo	39
Figura 19 - Mapa da capacidade viária, detalhe do continente	41
Figura 20 - Mapa da capacidade viária: detalhe do sistema de pontes	43
Figura 21 - Mapa da capacidade da rede viária: detalhe do centro e interior da ilha	45
Figura 22 - Mapa da capacidade viária: detalhe da região norte da ilha	46
Figura 23 - Volumes máximos e capacidades para cada ponto	47
Figura 24 - Níveis de saturação observados na rede viária durante o período manhã	49
Figura 25 - Níveis de saturação observados na rede viária durante o período da tarde	50
Figura 26 - Velocidade medida x velocidade permitida	53

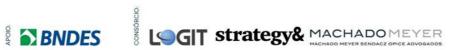


Figura 27 - Mapa de velocidades observadas: período manhã	54
Figura 28 - Mapas de velocidades observadas: detalhe do centro do continente - período man	ıhã 56
Figura 29 - Mapas de velocidades observadas: detalhe do centro da ilha - período manhã	57
Figura 30 - Mapa de velocidades observadas: período da tarde	58
Figura 31 - Mapa de velocidades observadas: detalhe do centro do continente - período tarde	59
Figura 32 - Gráfico exemplo função fluxo-demora	62
Figura 33 - Função VFD e dados observados da relação volume capacidade e velocidade	para
coletora tipologia 30	64
Figura 34 - Hierarquia viária - Grande Florianópolis	67
Figura 35 - Hierarquia viária - centro de Florianópolis	68
Figura 36 - Rotas Florianópolis-Palhoça	70
Figura 37 - Rotas Florianópolis-Biguaçu	71
Figura 38 - Rotas Barra da Lagoa-Jurerê	72
Figura 39 - Histograma de tempo mínimo entre zonas	74
Figura 40 - Matriz de tempos mínimos - 327 zonas da área de estudo	76
Figura 41 - Matriz de tempos mínimos médios por municipio	77
Figura 42 - Histograma de distância mínima entre zonas	78
Figura 43 - Matriz de distâncias mínimas: 327 zonas da área de estudo	79
Figura 44 - Matriz de distâncias minimas médias municipio	80
Figura 45 – Tempo: origem centro Florianópolis	82
Figura 46 – Tempo: origem centro de Palhoça	83
Figura 47 – Tempo: origem centro de Biguaçu	84
Figura 48 – Tempo: origem centro de São José	85
Figura 49 – Tempo: origem UFSC	86
Figura 50 – Tempo: origem Canasvierias	87
Figura 51 – Tempo: origem Porto da Lagoa	88

Índice de Tabelas

abela 1 - Grupos de pontos de contagem 1	L2
abela 2 - Localização dos pontos mestres de pesquisa1	۱5
abela 3 - Localização dos pontos de pesquisa período de pico	L5
abela 4 - Localização dos pontos <i>Cordon Line</i> e <i>Screen Line</i>	L 7
abela 5 - Trajetos da pesquisa de velocidade e retardamento	LS
abela 6 - Tipos de veículos e fatores de equivalência2	25
abela 7 - Capacidade por tipologia3	34
abela 8 - Resumo da relação de tempo de verde <i>versus</i> tempo de ciclo nas interseções estudada	as
	36
abela 9 - Velocidades observadas para as hierarquias básicas 5	52
abela 10 - Componentes da função fluxo-demora nos links 6	51
abela 11 - Exemplo de parâmetros de uma função de fluxo-demora 6	51
abela 12 - Velocidades tipologias 6	52
abela 13 - Parâmetros tipologias6	35
abela 14 - Extensão total de vias por hierarquia6	66
abela 15 - Rotas Florianópolis-Palhoça 7	7C
abela 16 - Rotas Florianópolis-Biguaçu 7	71
abela 17 - Rotas Barra da Lagoa-Jurerê 7	72
abela 18 - Média, mediana e desvio padrão caminhos mínimos área estudo 7	73
abela 19 - Código cromático: representação de matrizes de tempos e distâncias 7	75

1. Introdução

O Plano de Mobilidade da Região Metropolitana da Grande Florianópolis - PLAMUS tem como um de seus instrumentos de análise de alternativas de intervenção na oferta e na demanda de transporte um modelo de simulação do sistema de transporte.

A oferta é dada pelo espaço viário, traduzida em forma de capacidade de suporte à circulação de veículos. Os veículos transportam pessoas, traduzindo uma segunda medida, de interesse, que é a capacidade de transportar pessoas.

A oferta de transporte, do ponto de vista do usuário, como em qualquer mercado, também está associada a custo que, nesse caso, é dado por uma combinação de valor monetário e tempo. O tempo tem um valor para as pessoas, valor este determinado na pesquisa de preferência declarada.

De acordo com a definição *lato sensu*, o índice de mobilidade é dado pelo número médio de viagens realizadas por uma pessoa por dia. Quem consome mais viagens tem maior mobilidade. O índice de mobilidade seria, então, um indicador de riqueza ou de desenvolvimento econômico.

Esse relatório consiste na descrição dos dados básicos usados na definição e codificação da rede e na representação do sistema viário. Também descreve a aplicação de procedimentos de consistência da rede com identificação e verificação de parâmetros usados para identificar o comportamento de viagens e a relação entre volume, capacidade e velocidade.

2. Apresentação das informações

2.1. Rede de simulação

Como foi apresentado no relatório 3.1, a importância da modelagem da rede consiste em representar as características da malha de transporte da área de estudo. Para tal, os principais elementos da rede de simulação são:

- Zoneamento: utiliza-se para a representação das zonas de origem e destino de viagens;
- Rede viária: representa as ligações da rede viária e acomoda os itinerários das linhas de transporte coletivo;
- Pontos: servem para representar nós da rede de transporte e outros pontos, como polos geradores de tráfego e terminais de passageiros ou de carga.

2.1.1. Zoneamento

Para se ter uma delimitação geográfica para as origens e destinos de viagens, a área de estudo é dividida em zonas de tráfego. Os 13 municípios que compõem a área foram, assim, divididos em 327 zonas, as quais foram agrupadas em um conjunto de 60 macrozonas e estas em um outro conjunto mais agregado de 36 macrozonas. As zonas agregadas são usadas para facilitar a apresentação de resultados, enquanto as zonas externas são consideradas como 5 "portas" de entrada/saída.

As zonas são representadas na rede de simulação por pontos denominados centroides. Os centroides são considerados os pontos de origem ou de destino de viagens e devem ser vistos como o centro de gravidade das zonas. Portanto, nos modelos matemáticos de simulação, as zonas não existem como uma área, sua representação passando a ser os pontos de origem e destino, os centroides. A Figura 1 apresenta um exemplo de zoneamento da rede de simulação.

Figura 1 - Zonas de tráfego na área central de Florianópolis

Os centroides são ligados à rede viária por conectores. Note-se que os centroides são parte da rede simulação, mas não representam nenhum elemento do sistema viário. A Figura 2 ilustra um conjunto de centroides e conectores na região do estudo.

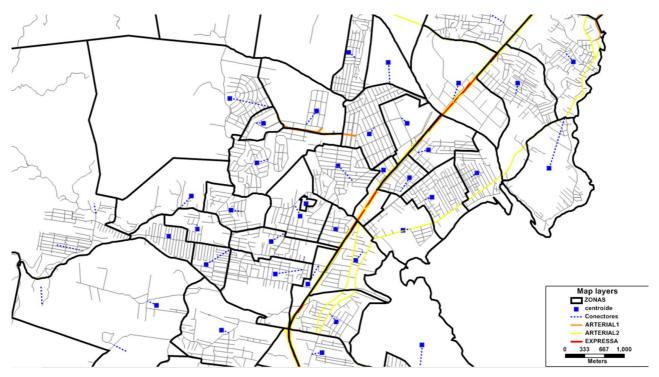


Figura 2 - Conjunto de zonas com centroides e conectores

2.1.2. Rede viária

A rede utilizada para a simulação é composta por cerca de 31.000 segmentos que representam aproximadamente 5 mil quilômetros da rede viária real. A Figura 3 ilustra parte da rede viária considerada.

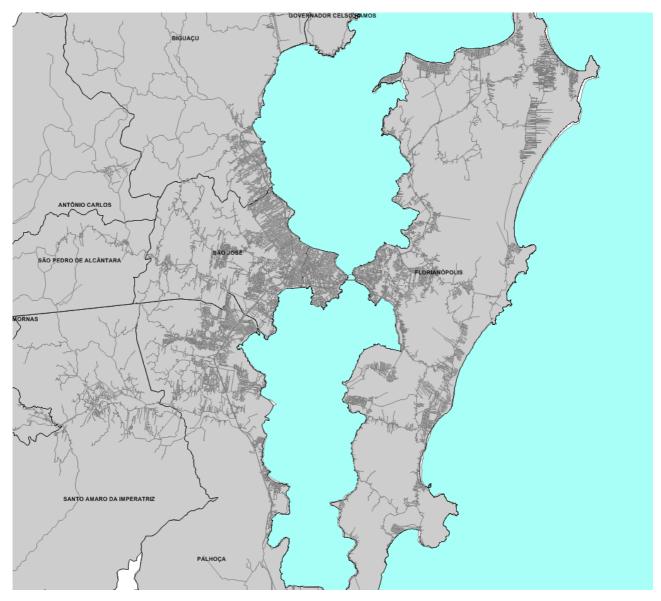


Figura 3 - Rede viária e área de estudo por município

Os seguintes atributos são utilizados para classificar a rede viária e identificar suas características de funcionamento:

- Tipo de via;
- Número de pistas e faixas (efetivos, estacionamentos e totais);
- Velocidade máxima permitida e velocidade de fluxo;
- Tipos de superfícies;

- Gradiente da via;
- Localização com relação ao centro da cidade.

O levantamento dessas características para cada ligação gera um espectro de diferentes categorias e hierarquias operacionais da rede rodoviária. Esta hierarquia é usada para definir as funções de capacidade e velocidade dos segmentos.

A hierarquia operacional consiste na definição de grupos de ligações de características geométricas e de funcionamento semelhantes, ou pelo menos comparáveis, com padrões similares de comportamento na rede. A tipologia segue a hierarquia de vias da cidade e serve para padronizar a rede.

A definição final da hierarquia, da capacidade e da velocidade dos segmentos faz parte do processo de definição da rede rodoviária de simulação apresentado neste documento.

2.2. Informação levantada

Os insumos principais para alimentação e calibração do modelo de simulação são os dados de comportamento da demanda por transporte. Apoiam-se principalmente em informação de volumes e velocidades de fluxo dos veículos.

A obtenção desta informação se realiza através dos seguintes levantamentos de campo:

- Contagens veiculares: contagem classificada de veículos por períodos de 15 minutos;
- Estudos (pesquisas) de velocidade de fluxo: medição da velocidade com GPS a bordo de veículos, em diferentes partes da malha viária, geralmente em horários de pico.

A descrição detalhada dos resultados destes estudos é apresentada em relatórios específicos. Para o presente documento são utilizadas informações geradas por estes estudos para análises relacionadas com volume, capacidade e velocidade de fluxo das vias da área de estudo.

2.3. Pontos de contagem

2.3.1. Descrição e classificação

As contagens foram realizadas em pontos agrupados conforme descrito na Tabela 1. Foram selecionados 41 pontos de contagem. Desses, 6 foram denominados pontos mestres, nos quais as pesquisas ocorreram em um intervalo maior de tempo (das 6h às 22h), enquanto nos 35 pontos restantes aconteceram apenas nos períodos de pico. Adicionalmente, se realizaram levantamentos em 6 pontos externos denominados *Cordon Line*, 4 pontos denominados *Screen Line* e um ponto redundante *Cordon Line* e *Screen Line*.

Tabela 1 - Grupos de pontos de contagem

TIPO DE PONTO	NÚMERO DE PONTOS	PERÍODO PESQUISADO (Horas)
Mestre	6	6:000 – 22:00
Contagens Período Pico	35	6:30 – 10:00 & 16:00 – 19:30
Cordon Line	5	7:00 – 18:00
Screen Line	4	6:00 –20:00
Cordon Line e Screen Line	1	6:00 –20:00

A metodologia consistiu em fazer a contagem dos tipos de veículos observados na via, classificados nas seguintes categorias:

- Carro
- Ônibus
- Bicicleta
- Motocicleta
- Caminhão (2 eixos)
- Caminhão (3 ou mais eixos)
- Van

Táxi

Para todos os pontos estudados os dados foram coletados em intervalos de 15 minutos. Cada intervalo apresenta um registro, contendo o volume de veículos, classificados por categorias, que transitaram durante este intervalo.

Os mapas da Figura 4, Figura 5 e Figura 6 mostram a localização dos 51 pontos de contagem.

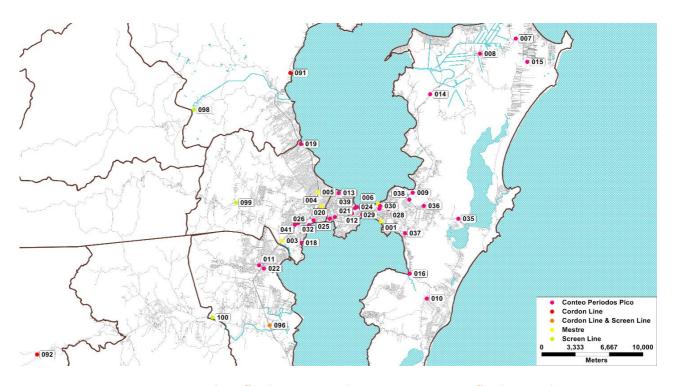


Figura 4 - Localização dos pontos de contagem na região de estudo

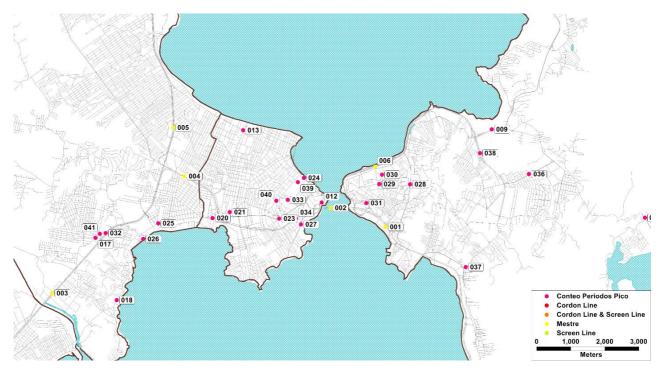


Figura 5 - Localização dos pontos de contagem na região de estudo, detalhe da região central

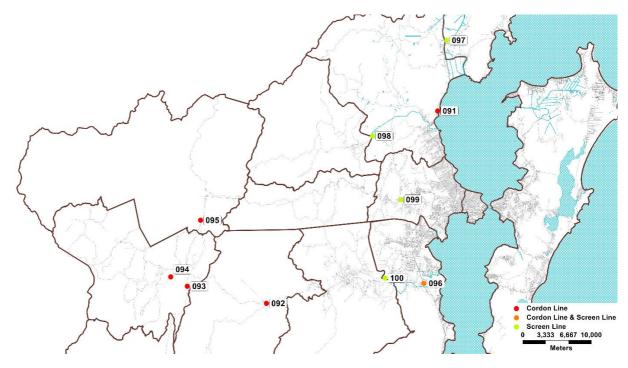


Figura 6 - Localização dos pontos Cordon Line e Screen Line

A Tabela 2 apresenta a localização dos pontos-mestres de pesquisa.

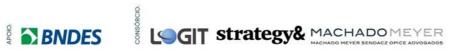
Tabela 2 - Localização dos pontos mestres de pesquisa

Ponto	Descrição	Município	Data de Pesquisa
001	ROD. GOV. GUSTAVO RICHARD	FLORIANÓPOLIS	05/05/14
002	PONTE GOV. COLOMBO MACHADO SALLES / PONOTE GOV. PEDRO IVO CAMPOS	FLORIANÓPOLIS	30/05/14
003	BR-101 saída 210 (Rua Pedro Cota de Castro)	SÃO JOSÉ	13/05/14
004	BR-282 prox. Shopping Itaguaçu	SÃO JOSÉ	13/05/14
005	BR-101 entre os kms 204 e 207	SÃO JOSÉ	08/05/14
006	AVENIDA BEIRA MAR NORTE	SÃO JOSÉ	14/05/14

A localização dos 35 pontos de contagem nos períodos de pico é apresentada na Tabela 3.

Tabela 3 - Localização dos pontos de pesquisa período de pico

Ponto	Descrição	Município	Data de Pesquisa
007	SC-403, prox. Rua Três Marias	FLORIANÓPOLIS	08/04/14
008	ESTRADA CRISTÓVÃO MACHADO DE CAMPOS,31	FLORIANÓPOLIS	08/04/14
009	AV. DA SAUDADE	FLORIANÓPOLIS	09/04/14
010	AV. PEQUENO PRÍNCIPE, 145	FLORIANÓPOLIS	11/04/14



Ponto Descrição		Município	Data de Pesquisa
011	RUA ATÍLIO PEDRO PAGANI, prox. Shopping Via Catarina	PALHOÇA	29/04/14
012	RUA QUATORZE DE JULHO	FLORIANÓPOLIS	16/04/14
013	RUA MARINHEIRO MAX SCHRAMM, 3122	FLORIANÓPOLIS	24/04/14
014	SC-401 - Rod. José Carlos Daux, entre SC- 402 e Rua Manoel joão Martins	FLORIANÓPOLIS	08/04/14
015	RUA JOÃO GUALBERTO SOARES, 2461	FLORIANÓPOLIS	08/04/14
016	AV. DEP. DIOMÍCIO FREITAS, 464	FLORIANÓPOLIS	11/04/14
017	RUA LUIZ FAGUNDES,1078	SÃO JOSÉ	28/04/14
018	RUA FREDERICO AFONSO,4005	SÃO JOSÉ	29/04/14
019	BR-101, km199	SÃO JOSÉ	29/04/14
020	AV. GOV. IVO SILVEIRA, 1766	FLORIANÓPOLIS	24/04/14
021	RUA PREFEITO DIB CHEREM,2756	FLORIANÓPOLIS	23/04/14
022	AV. BARÃO DO RIO BRANCO,316	PALHOÇA	29/04/14
023	AV. GOV. IVO SILVEIRA, 1566	FLORIANÓPOLIS	22/04/14
024	RUA FÚLVIO ADUCCI,710	FLORIANÓPOLIS	16/04/14
025	RUA PRES. KENNEDY, 1278	SÃO JOSÉ	24/04/14
026	AV. BEIRA MAR SÃO JOSÉ	SÃO JOSÉ	25/04/14
027	AV. ENG. MAX DE SOUZA,720	FLORIANÓPOLIS	16/04/14
028	AV. MAURO RAMOS, 1114	FLORIANÓPOLIS	15/04/14
029	AV. BARÃO DO RIO BRANCO, 316	FLORIANÓPOLIS	15/04/14
030	Prof. Othon Gama D' Eça, 705	FLORIANÓPOLIS	14/04/14

Ponto	Descrição	Município	Data de Pesquisa
031	Av. Paulo Fontes, Prox. TICEN	FLORIANÓPOLIS	14/04/14
032	BR-101, km 208	SÃO JOSÉ	28/04/14
033	AV. JUSCELINO KUBITSCHEK DE OLIVEIRA, frente ao MACRO	FLORIANÓPOLIS	22/04/14
034	BR-282, prox. saída para Coqueiros	FLORIANÓPOLIS	16/04/14
035	RODOVIA ADMAR GONZAGA, prox. Rua Laurindo Januário da Silveira	FLORIANÓPOLIS	11/04/14
036	AV. MADRE BENVENUTA, 1749	FLORIANÓPOLIS	09/04/14
037	RUA DEP. ANTÔNIO EDU VIEIRA, prox. Rua João Motta Espezim	FLORIANÓPOLIS	15/04/14
038	AV. PROF. HENRIQUE DA SILVA FONTES, prox. TITRI	FLORIANÓPOLIS	10/04/14
039	AV. GEN. EURICO GASPAR DUTRA,746	FLORIANÓPOLIS	16/04/14
040	SANTOS SARAIVA	FLORIANÓPOLIS	23/04/14
041	AV. VER. ARTHUR MANOEL MARIANO, 155	SÃO JOSÉ	28/04/14

A Tabela 4 apresenta a localização dos pontos de "Cordon Line" e "Screen Line".

Tabela 4 - Localização dos pontos Cordon Line e Screen Line

Ponto	Descrição	Tipo	Município	Data de Pesquisa
091	BR-101, Km 192	Cordon Line	BIGUAÇU	10/06/14

Ponto	Descrição	Tipo	Município	Data de Pesquisa
092	SC-435, prox BR-282	Cordon Line	ÁGUAS MORNAS	25/06/14
093	SC-108, prox BR-282	Cordon Line	RANCHO QUEIMADO	26/06/14
094	BR-282, prox. SC-108	Cordon Line	RANCHO QUEIMADO	24/06/14
095	SC-108, entre SC-281 e BR-282	Cordon Line	ANGELINA	27/06/14
096	BR-101, km 219	Cordon Line	PALHOÇA	11/06/14
096	BR-101, km 219	Screen Line	PALHOÇA	10/06/14
097	SC-410, saída 180 da BR-101	Screen Line	GOVERNADOR CELSO RAMOS	06/06/14
098	SC-407, a 10 km da BR-101 pela saída 193	Screen Line	BIGUAÇU	09/06/14
099	SC-281, a 6,2 km da BR-101 pela saída 213	Screen Line	SÃO JOSÉ	04/06/14
100	BR-282 RODOVIA PEDRO NERI SCHINDEN, a 5,1 km da saída 214 da BR-101	Screen Line	PALHOÇA	05/06/14

2.4. Pesquisa de velocidades

O objetivo desta pesquisa é obter as informações sobre as velocidades e retardamento de veículos no sistema viário principal da cidade, de modo a avaliar o desempenho da circulação nas vias.

Essa pesquisa foi realizada nos dias 3, 7, 9, 10 e 14 de julho de 2014. A Tabela 5, a seguir, mostra cada um dos trajetos percorridos.

Tabela 5 - Trajetos da pesquisa de velocidade e retardamento

Percurso	Data	Início	Fim	
1	3-jul-14	Cruzamento da SC-405 x av. Baldicero Filomeno	R. Vereador Osni Ortiga x Av. Rendeiras (6 + 1)	
2	9-jul-14	Alça de acesso do cemitério para a Av. da Saudades em direção ao TITRI	Cruzamento Rod. Admar Gonzaga x R. Laurindo Januário da Silva x R. João Pacheco da Costa	
3	3-jul-14	Av. Madre Benvenuta, começando na Rodovia Admar Gonzaga	Shopping Iguatemi esquina com a Av. Beira Mar Norte	
4	3-jul-14	R. João Pio Duarte (3 - UFSC)	Rod. Admar Gonzaga x r. Vera Linhares de Andrade depois vira r. João Pio Duarte	
5	3-jul-14	BR-101 Shopping Itaguaçu	SC-405 - trevo do Campeche	
6	3-jul-14	Av. Oswaldo José do Amaral x Rua Geral de Potecas	R. Higino Luiz Gonzaga (5)	
7	7-jul-14	Rod. João Gualberto Soares x Estr. Int. João Nunes Vieira	Rod. João Gualberto Soares x entrada para Praia do Moçambique	
8	7-jul-14	Av da Saudade x Av. Governador Irineu Bornhausen	SC-401 x SC-403	
9	7-jul-14	Av. Osvaldo Rodrigues Cabral x R. Antonio Pereira Oliveira Neto	Rua Deputado Antonio Edu Vieira x av. Prefeito Waldemar Vieira	
10	7-jul-14	Av. Mauro Ramos x Av. Jorn.	R. Silva Jardim x Av. Gov.	

Percurso	Data	Início	Fim	
		Rubens de Arruda Ramos	Gustavo Richard	
11	7-jul-14	Praça Gov. Celso Ramos x R.	R. Demétrio Ribeiro x Av	
11		Frei Caneca	.Mauro Ramos	
12	9-jul-14	R. Heitor Luz x R. Frei Caneca	R. Alm. Lamengo x R. Des. Arno Hoeshi	
13	9-jul-14	R. Padre Roma x Av Paulo Fontes	R. Padre Roma x Av. Rio Branco	
14	9-jul-14	Av. Rio Branco x Av. Mauro	Av. Rio Branco x R. Felipe	
	J jui 14	Ramos	Schmidt	
15	9-jul-14	BR101 x BR282	BR101 x saída 193	
16	9-jul-14	Av. Leoberto Leal x Rotária	Rotária x Av. Leoberto Leal	
17	10-jul-14	Av. Gov. Ivo da Silveira x Av.	R. Frederico Afonso x R.	
		Pres. Kennedy	Benjamin Gerlach	
18	10-jul-14	Av. Ivo da Silveira em frente ao	Av. Ivo da silveira x R. Visc. De	
		Angeloni	Cairú	
19	11-jul-14	R. Des. Pedro Silva x R. Fritz	R. Des. Pedro Silva x R. Fritz	
		muller	muller	
20	10-jul-14	R. Dr. Heitor Blum x r. Fúlvio	R. Prefeito Adib Cherem x Av.	
		Aducci	Gov. Ivo Silveira	
21	11-jul-14	Av. Atlântica x R. Mar. Max	Av. Josué di Bernardi x Av.	
		Schramm	Presid. Kennedy	
22	10-jul-14	R. Luiz Fagundes x R. Getúlio Vargas	Trevo de Forquilhinhas	
23	10-jul-14	R. Vereador Arthur Manoel	R. Vereador Arthur Manoel	

Percurso	Data	Início	Fim	
		Mariano x R. Tem. Altino Rosa	Mariano x trevo de	
			Forquilhinhas	

Cada um dos trajetos foi mapeado e é mostrado na

Figura 7 e na Figura 8, a seguir.

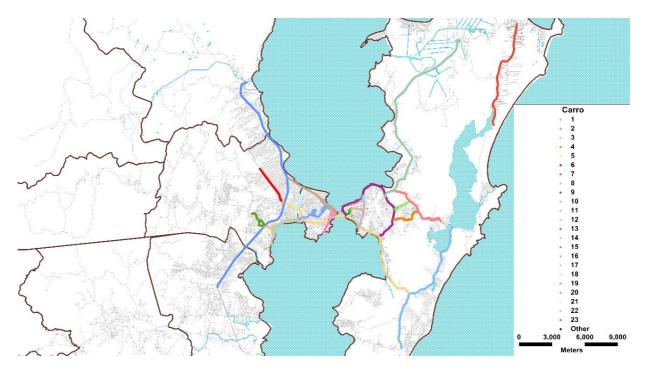


Figura 7 - Mapa com trajetos percorridos na pesquisa de velocidade

Figura 8 - Mapa com trajetos percorridos na pesquisa de velocidade, detalhe do Centro

3. Volume e capacidade das vias

Neste capítulo discutem-se algumas características da rede viária da área de estudo, a fim de se adotar parâmetros específicos para o processo de modelagem da oferta e da demanda por transporte.

A análise das variáveis associada ao desempenho das vias foi realizada na classificação da rede viária, já obtida e preparada anteriormente. A tipologia, assim como velocidades e outras características identificadas, integra os fatores principais para estudar e definir os parâmetros de modelagem da rede viária.

Também foram incorporados elementos de análise sobre as condições de controle de tráfego. Em seguida, mapeou-se a localização dos semáforos na rede viária, assim como a repartição do tempo de ciclo para vias arteriais, coletoras e locais.

As variáveis principais analisadas foram os volumes de fluxo veicular e a velocidade. Estes elementos permitiram a caracterização da rede.

Os atributos para simulação são:

- Extensão: distância entre os nós que limitam a ligação;
- Capacidade: volume teórico máximo que pode passar pela via;
- Velocidade: função das características da via a velocidade inicialmente codificada é equivalente à velocidade de tráfego livre.

A base de dados da rede viária também incorpora dados de volumes de tráfego das pesquisas, usados para a calibração das matrizes de viagem da pesquisa domiciliar de origem e destino.

3.1. Hierarquia das vias para o PLAMUS

A classificação da rede original é muito detalhada para os objetivos de uma rede de simulação. Assim, procedeu-se a uma varredura da rede para verificar características geométricas e

funcionais de forma a definir uma hierarquia condizente com os objetivos de modelagem para o PLAMUS.

Os conceitos utilizados foram:

- Via expressa
- Arterial de Primeira Categoria (Arterial 1)
- Arterial de Segunda Categoria (Arterial 2)
- Coletora
- Local

A Figura 9 mostra a hierarquia da rede viária da região de estudo, baseada nos critérios funcionais anteriormente apresentados no relatório 3.1 - Preparação do Modelo de Simulação. A Figura 10 mostra uma ampliação da região central.

Figura 9 - Tipologia viária na região de estudo

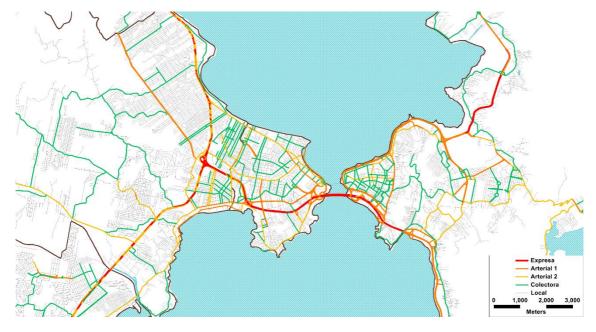


Figura 10 - Hierarquia viária do centro de Florianópolis

3.2. Volumes veiculares detectados

A análise de desempenho do sistema viário, cujo objetivo é conhecer as condições de capacidade e velocidade de fluxo, foi feita a partir de valores considerados por tipo de veículo. Para isso, os diferentes volumes foram convertidos em veículos equivalentes.

As categorias de veículos, assim como o peso atribuído a cada uma delas, estão apresentadas na Tabela 6.

Tabela 6 - Tipos de veículos e fatores de equivalência

Tipo de veículo	Veículo equivalente
Autos e Utilitários	1
Ônibus, caminhão leve	2
Caminhão pesado	2,5
Motocicletas	1/6

A contagem registrou os volumes de tráfego de cada ponto pesquisado. As áreas mais centralizadas e as vias arteriais e expressas possuem os maiores volumes. O binário formado pelas Pontes Governador Colombo Machado Salles e Governador Pedro Ivo Campos apresenta o maior fluxo diário registrado, contabilizando-se 189 mil veículos em um período compreendido entre as 6h e as 22h. Destes, aproximadamente 90 mil realizam movimento pendular.

A Figura 11 e a Figura 12 apresentam, respectivamente, os volumes totais diários e os volumes diários por sentido de cada ponto mestre estudado.

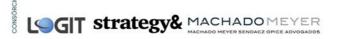


Figura 11 - Volume total diário por ponto (ambos sentidos)

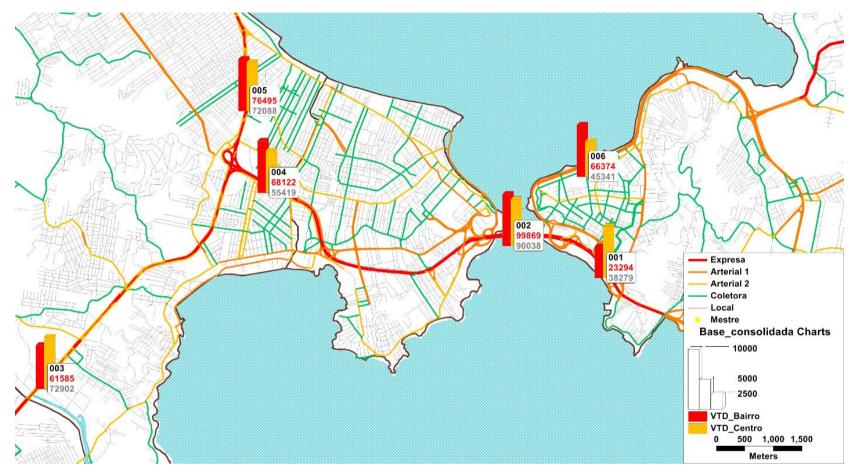


Figura 12 - Volume total diário por ponto por sentido

A análise dos volumes e o comportamento horário do fluxo de tráfego medido são o cerne dessa análise.

A capacidade veicular das vias é diretamente proporcional ao seu número de faixas. A Tabela 8 mostra os volumes máximos observados por faixa, para cada tipo de via.

Tabela 8 - Volumes máximos observados por faixas

Tipo de via	Volume máximo por faixa observado
Expressa	2.158
Arterial	1.624
Coletora	1.273

As vias expressas apresentam os maiores fluxos horários por faixa, e o mesmo pode ser observado no sistema das pontes de entrada e saída da Ilha de Santa Catarina. Nas rodovias BR-101 e BR-282 o volume de tráfego varia a partir de 1.600, superando os 2.100 veículos equivalentes por hora. Nas vias arteriais, mesmo as que dispõem de grande quantidade de faixas por sentido, os volumes de tráfego não são tão altos como os das vias expressas. Analisando como exemplo o caso da Av. Beira Mar Norte, o fluxo não supera a faixa de 1.500 veículos equivalentes por hora. Especula-se que esse fenômeno ocorra porque o fluxo veicular é interrompido pelo controle semafórico.

A Figura 13, a Figura 14 e a Figura 15 apresentam os volumes de tráfego máximos por faixa efetiva observados da região central.

Figura 13 - Volume máximo observado por faixa efetiva, região central

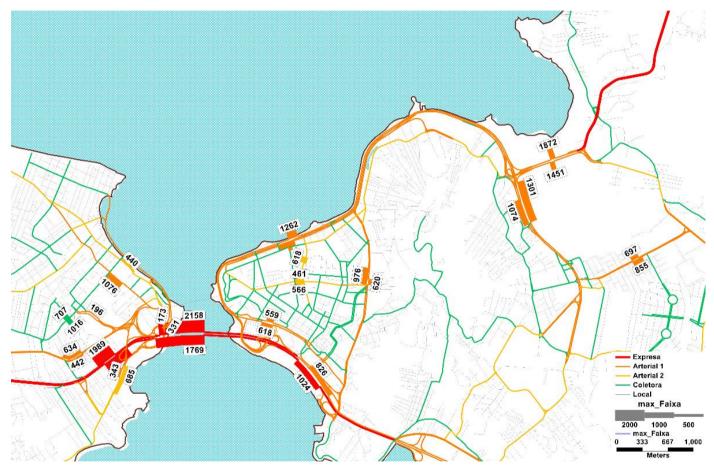


Figura 14 - Volume máximo observado por faixa efetiva, região central da Ilha

Figura 15 - Volume máximo observado por faixa, região central continente

A partir dessa perspectiva, a tipologia da rede foi revisada a fim de encontrar uma classificação apropriada para representar os volumes de fluxo observados, incluindo, principalmente, a identificação das vias de fluxo contínuo, semaforizadas e não semaforizadas. Este procedimento foi realizado com o objetivo de avaliar o desempenho do fluxo veicular observado, a partir dos critérios da capacidade máxima das vias com características semelhantes às encontradas na área de estudo.

3.3. Capacidade da rede viária

Capacidade viária é definida como o máximo fluxo horário de pessoas ou veículos que passam por um ponto ou seção uniforme estando predeterminadas certas condições no período avaliado, como características de controle ou condição de tráfego.¹

O estudo e a determinação da capacidade viária se baseiam na seleção e análise de segmentos ou pontos viários com características semelhantes. Dessa maneira, a capacidade definida para uma via será uma taxa de fluxo horário que poderá ser alcançada várias vezes durante os períodos de suficiente demanda veicular.

A capacidade pode não ser o máximo fluxo veicular definido para a via. Características específicas dos condutores, o dia da medição ou outros fatores podem alterar em alguma medida o desempenho da infraestrutura.

Assumindo como estáticas as características viárias, foram selecionadas algumas classificações sugeridas pelo HCM (2010) para serem adotadas como tipologias viárias de referência da rede da área de estudo. A capacidade para cada tipologia é mostrada na Tabela 7. A capacidade foi estimada para fluxo contínuo, ou seja, 100% de tempo verde. O intervalo possível de capacidade, quando considerada a semaforização, também é apresentado na tabela.

¹ Highway Capacity Manual, 2010.

BNDES

Tabela 7 - Capacidade por tipologia

Tipologia	Hierarquia	Descrição	Capacidade (veic/h/faixa)	Capacidade com semáforo (veic/h/faixa)
1	Expressa	Rodovia semiurbana com fluxos segregados, mínimo de 2 faixas por sentido, controle de acesso sem interrupção de tráfego	2.200	
2	Expressa	Rodovia urbana com fluxos	2.100	
3	Expressa	segregados, mínimo de 2 faixas por	1.900	
3	Expressa	sentido, controle de acesso sem interrupção de tráfego	1.900	
4	Expressa	Rodovia com uma faixa por sentido, sem controle de acesso.	1.600	
5	Expressa	Rodovia sem controle de acesso (ou controle parcial), com média declividade	1.800	
10	Arterial		1.900	855 – 1.045
11	Arterial		1.800	810 - 990
12	Arterial	Rodovia com mínimo de 2 faixas por sentido, com interrupção periódica de tráfego	1.700	765 - 935
13	Arterial		1.500	675 - 825
14	Arterial		1.300	585 - 825
15	Arterial		1.200	540 - 825
16	Arterial	Rodovia com uma faixa por	1.500	675 - 825
17	Arterial	sentido, sem controle de acesso	1.300	585 - 825

Tipologia	Hierarquia	Descrição	Capacidade (veic/h/faixa)	Capacidade com semáforo (veic/h/faixa)
18	Arterial		1.100	495 - 825
19	Arterial		1.000	450 - 675
20	Arterial	Rodovia sem controle de acesso (ou controle parcial), com alta declividade	900	405 - 608
30	Coletora	Rua com alta densidade de acessos	900	450 - 675
31	Coletora	lindeiros, localizada em área	700	450 - 675
32	Coletora	urbana	700	450 - 675
33	Coletora	Rua com alta densidade de acessos lindeiros, localizada em área urbana, com pavimento de paralelepípedos	630	405 - 608
34	Coletora	Rua com alta densidade de acessos lindeiros, localizada em área urbana e com alta declividade	490	315 - 473
40	Local	Rua local em área urbana	500	390 - 585
41	Local	naa loodi em di ed di band	500	390 - 585
42	Local	Rua local em área urbana com alta declividade	400	273 - 410

3.3.1. Controle de tráfego

Os pontos estudados foram classificados de acordo com o efeito gerado pelas interseções semaforizadas nos fluxos observados. Para os pontos controlados por semáforos, foi necessário

conhecer a relação entre o tempo em que o semáforo se mantinha verde (tempo de verde determinado por *G*) e o tempo de ciclo total do semáforo nessa interseção específica (tempo de ciclo determinado por *C*). Foram obtidos dados de planos semafóricos dos municípios de Florianópolis e São José. De posse dessa informação, foi analisada a relação de G/C para as vias estudadas. É possível encontrar em pontos com alta prioridade de passagem, como é o caso da Av. Mauro Ramos, interseções com até 65% do tempo de ciclo atribuído ao livre fluxo veicular. Em contrapartida, em outras vias sem tanta diferença de prioridade de passagem - por exemplo, interseções Arterial x Arterial - a distribuição do tempo de ciclo pode cair para até 45%. A Tabela 8 e a Figura 16 mostram os dados de tempo de semaforização obtidos.

Tabela 8 - Resumo da relação de tempo de verde *versus* tempo de ciclo nas interseções estudadas

Código ponto	G/C
028	0,65
029 Norte	0,55
001	0,49
006 Leste	0,49
006 Oeste	0,49
029 Sul	0,45
031	0,45

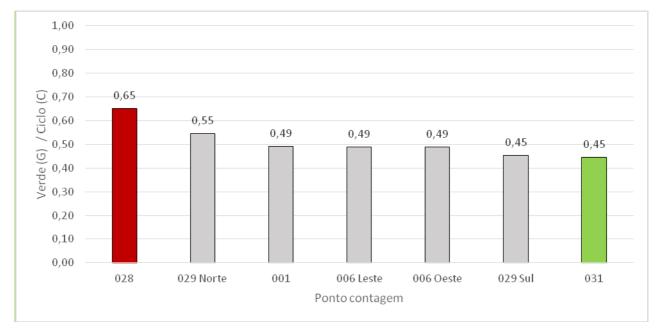


Figura 16 - Relação do tempo de verde versus o tempo de ciclo nas interseções estudadas

A relação G/C representa a divisão do tempo de ciclo entre as diferentes fases semafóricas que interferem na interseção. Nos casos em que uma fase semafórica obtém mais de 50% do tempo de ciclo, o tempo dedicado para as outras fases será significativamente menor que o dedicado ao fluxo principal. Ademais, na consideração da divisão do tempo de ciclo incluem-se os tempos dos fluxos de pedestres e o tempo de transição entre fases, em que nenhum fluxo tem possibilidade de passagem.

Na Figura 17 apresenta-se o resultado da capacidade nominal para cada tipologia viária obtida a partir do referencial do HCM, utilizando a divisão de tempos semafóricos da base de dados para o caso das vias semaforizadas. Nestes casos, foi utilizada uma relação de 65% de G/C para vias arteriais e de 35% para as vias coletoras semaforizadas.

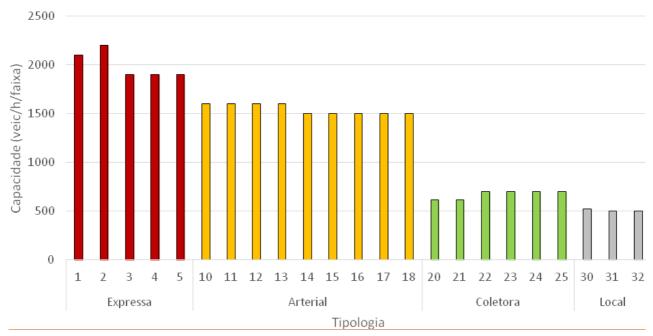


Figura 17 - Capacidade por tipologia

Com estas considerações, foram carregados os parâmetros de capacidade descritos anteriormente na rede de simulação, para conhecer-se o comportamento da capacidade viária da rede atual da área de estudo. Para o caso da rede de simulação, foram adotados preliminarmente os valores sugeridos pelo HCM.

A estimativa da capacidade viária foi feita com base no levantamento realizado do número de faixas efetivas e da relação tempo de verde e tempo de ciclo no caso das interseções semaforizadas, conforme descrito anteriormente.

A Figura 18 mostra o mapeamento da capacidade viária da região de estudo.

Figura 18 - Mapa da capacidade viária na região de estudo

Observam-se descontinuidades da capacidade viária ao longo de diferentes áreas. A Figura 19, a Figura 20, a Figura 21 e a Figura 22 apresentam os detalhes regionais do mapeamento.

Na Figura 19 verifica-se que a maior capacidade viária do continente está concentrada na BR-101. É perceptível também as variações da capacidade viária ao longo da BR-282, devidas ao aumento e diminuição do número de faixas em alguns locais por causa dos acessos às faixas centrais dessa via. Em outras vias que permitem a conexão entre a ponte e os outros municípios (Rua Leoberto Leal, Av. Presidente Kennedy e Av. Acioni Souza Filho) pode-se observar mudanças significativas de capacidade em diferentes segmentos.

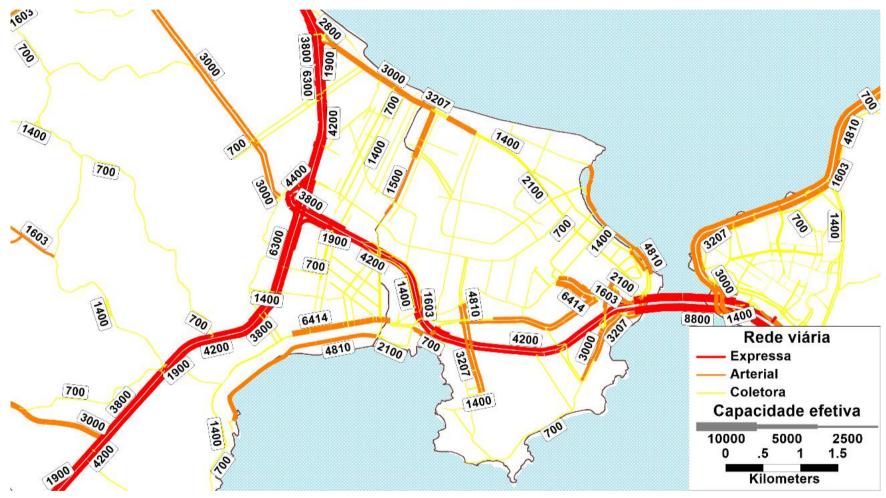


Figura 19 - Mapa da capacidade viária, detalhe do continente

Na Figura 20 observa-se o detalhe específico da capacidade viária do sistema de pontes que interligam e a ilha e o continente. Observa-se que tanto a Ponte Gov. Colombo Machado Salles quanto a Ponte Gov. Pedro Ivo Campos possuem maior capacidade viária comparativamente às outras vias do entorno. No entanto, do lado do continente existe uma grande quantidade de vias arteriais que confluem para a ponte, as quais podem gerar uma saturação de seu acesso e uma subutilização da sua seção.

Do lado da ilha, observa-se que há uma menor quantidade de vias confluentes, assim como uma capacidade viária com maior continuidade no sentido sul. Na Av. Beira Mar Norte, entretanto, as entradas e saídas das pontes são pontos de redução da capacidade viária.

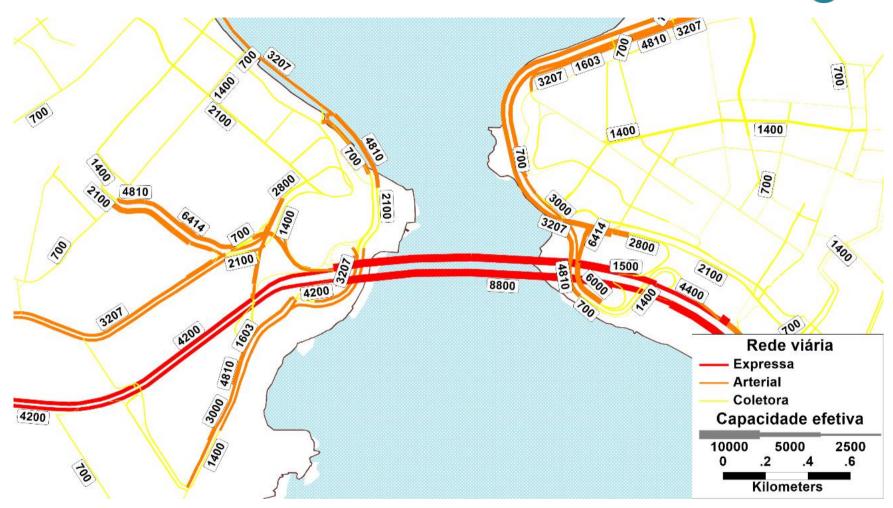


Figura 20 - Mapa da capacidade viária: detalhe do sistema de pontes

Na Figura 21 observa-se um rompimento da capacidade viária entre as principais vias no interior da ilha, R. Deputado Antônio Edu Vieira e R. Professor Lauro Caldeira. O trecho com menor capacidade verificado até agora é a conexão entre a Av. Beira Mar Sul e o interior da ilha, estabelecida pelas ruas Deputado Antônio Edu Vieira e Capitão Romualdo de Barros.

A Figura 22 apresenta a capacidade viária mapeada para a região norte da ilha. Nesta região, observa-se que as vias funcionam como alimentadoras entre as rodovias SC-401, SC-402 e SC-403 (troncos) e os bairros de vocação turística localizados nas praias do norte. À medida que se aumenta a capilaridade das vias nos bairros, perde-se capacidade viária em cada um de seus segmentos. No entanto, ganha-se cobertura com o aumento das vias locais.

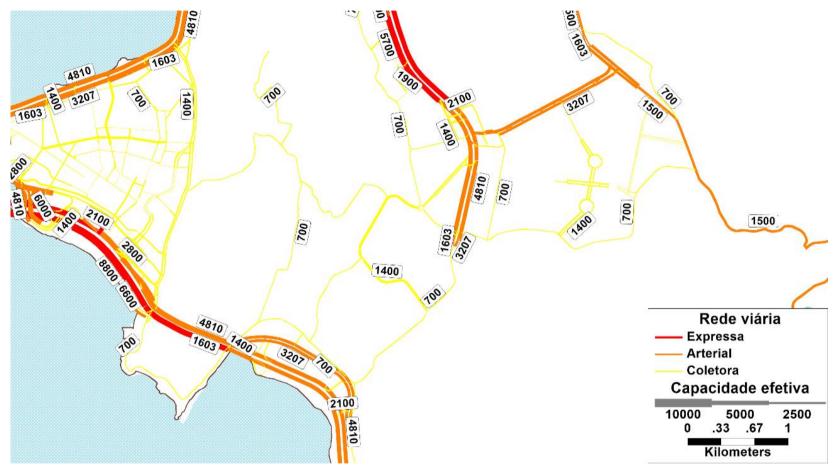


Figura 21 - Mapa da capacidade da rede viária: detalhe do centro e interior da ilha

Figura 22 - Mapa da capacidade viária: detalhe da região norte da ilha

3.4. Comparação entre volume e capacidade

Foram comparados os volumes críticos observados, em contraposição à capacidade teórica definida anteriormente em cada ponto de contagem. Podemos observar que para cada tipologia estabelecida obtêm-se diferentes níveis de saturação em cada um dos pontos. A saturação pode ser definida como a relação entre o volume de tráfego medido e a capacidade viária máxima do ponto. Assim, quanto mais essa relação se aproxima ao valor de 1, maior será a saturação do ponto. Interseções com menor fluxo podem apresentar níveis de saturação maiores que outros pontos observados, caso a capacidade de passagem dos veículos desses pontos sejam menores. Na Figura 23, observa-se graficamente a comparação entre os volumes máximos registrados por faixa de trânsito em todos os pontos observados e sua capacidade teórica.

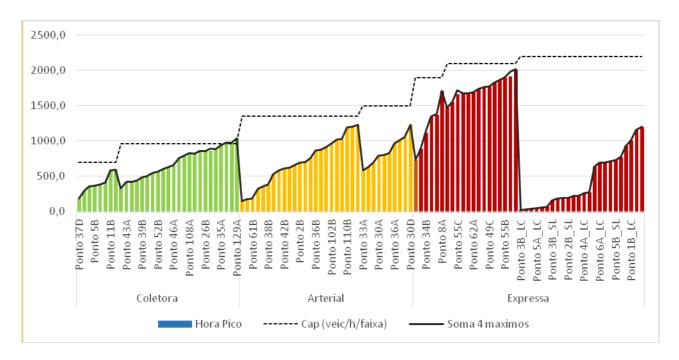


Figura 23 - Volumes máximos e capacidades para cada ponto

Confirma-se que as vias de hierarquia superior possuem os maiores fluxos máximos por faixa. Observa-se também que a saturação viária é atingida apenas por alguns pontos da rede, pontos estes estratégicos para o trânsito de veículos do resto da malha. Na Figura 24, verifica-se que a

rede viária do continente apresenta um nível de saturação superior a 0,9 da capacidade teórica no período da manhã. Entende-se que esse fenômeno seja consequência da confluência de viagens em direção à ponte de acesso à ilha. Observaram-se os maiores níveis de saturação dentro da ilha nas ruas Deputado Antônio Edu Vieira e Professor Lauro Caldeira de Andrade, no período da manhã.

Para o período da tarde, mostrado na Figura 25, verifica-se uma localização semelhante dos pontos de saturação. Em se tratando da malha viária dentro do continente, os maiores pontos de saturação podem ser observados nas ruas locais mais distantes das pontes de acesso à ilha. Entretanto, foram observados níveis de saturação superiores a 0,8 no complexo viário localizado na saída da ponte, sentido continente, sendo a própria ponte um dos principais pontos de saturação.

No que se referem à rede viária da ilha, as principais vias da zona do centro da cidade (Av. Beira Mar Norte, Av. Mauro Ramos, R. Deputado Antônio Edu Vieira, R. Professor Lauro Caldeira e Av. Da Saudade) tiveram níveis de saturação próximos ou superiores a 0,9.

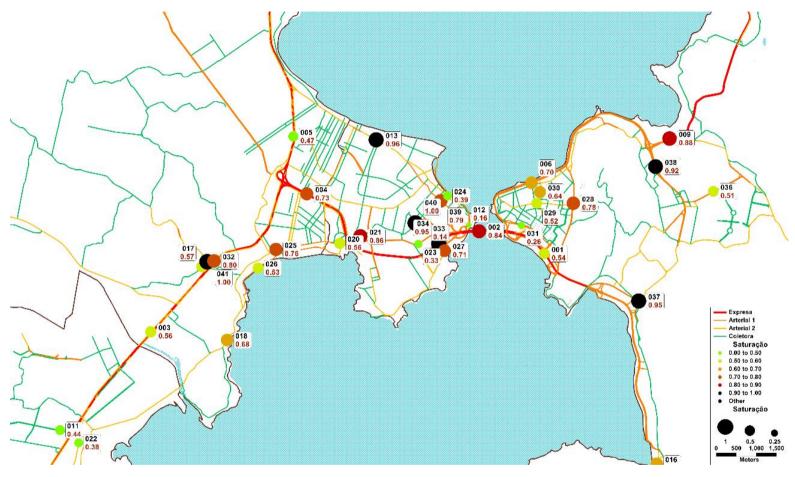


Figura 24 - Níveis de saturação observados na rede viária durante o período manhã

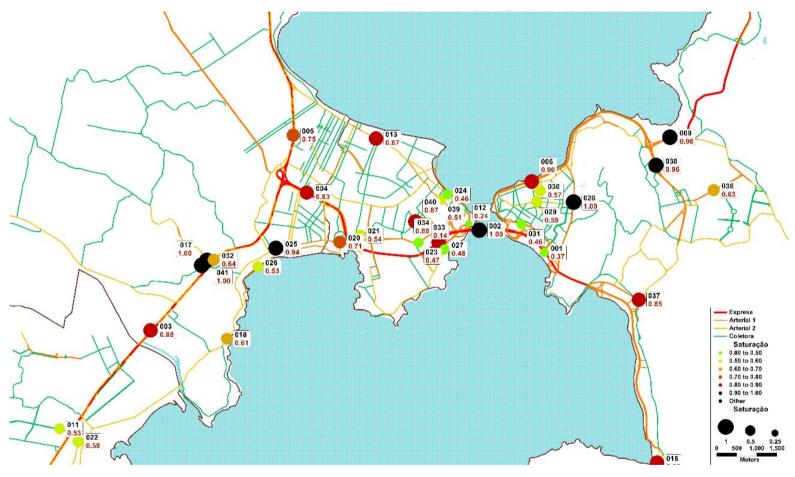


Figura 25 - Níveis de saturação observados na rede viária durante o período da tarde

4. Velocidade e tempos de viagem

A velocidade é uma das variáveis fundamentais no processo de modelagem. Cada uma das tipologias viárias tem características específicas que definem as condições da operação do tráfego, entre elas, a velocidade de fluxo livre.

4.1. Resultado das pesquisas de velocidade

A esse respeito, é de especial interesse saber a relação entre a velocidade permitida em cada trecho e a velocidade medida sob as condições presumíveis de fluxo livre. As vias expressas, por exemplo, têm velocidade máxima permitida em uma faixa entre 80 km/h e 100 km/h, tendendo, no entanto, a velocidade média de fluxo livre observada a ser menor que esta, e menor também que as velocidades teóricas referenciais contidas no manual de capacidade viária dos Estados Unidos, HCM. Nos casos em que a velocidade máxima permitida era de 100 km/h, a velocidade observada sob as condições presumíveis de fluxo livre chegou a 70 km/h. Os resultados médios encontrados para as tipologias básicas foram resumidos na Tabela 9.

A velocidade observada em condições de fluxo livre é, aproximadamente, 28% a 35% menor que a velocidade máxima permitida. Essa situação reflete as condições viárias atuais da maior parte da malha viária, tais como cruzamento de pedestres e grandes ladeiras. A Figura 26 ilustra os valores de velocidade máxima permitida e medida para cada tipo de via.

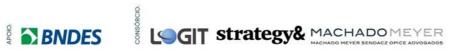


Tabela 9 - Velocidades observadas para as hierarquias básicas

Hierarquia	Velocidade Permitida (km/h)	Velocidade Medida (km/h)	Velocidade Medida / Velocidade Permitida
EXPRESSA	94	68	72%
	100	70	70%
	80	63	78%
	60	51	85%
ARTERIAL1	66	47	71%
	80	57	71%
	60	39	66%
	40	34	85%
ARTERIAL2	51	35	68%
	60	39	66%
	50	35	71%
	40	29	74%
COLETORA	40	26	65%
	40	26	65%

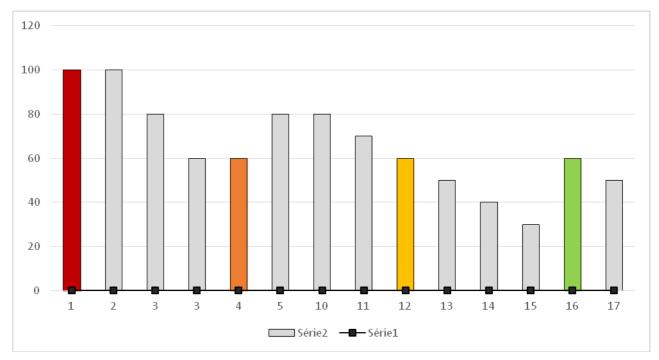


Figura 26 - Velocidade medida x velocidade permitida

A categoria das Coletoras e as identificadas como Arterial 2 são, em sua maioria, vias de dois sentidos de circulação sem separação física de fluxo, com apenas uma faixa por sentido de circulação, viário típico da grande Florianópolis. Essas tipologias apresentam maiores conflitos de trânsito por causa da dinâmica urbana do setor em que estão localizadas, suas velocidades sendo, consequentemente, relativamente baixas.

A seguir ilustram-se alguns resultados do estudo de velocidade, que está detalhadamente descrito no relatório 8.3 - Pesquisas de Velocidade, Embarque e Desembarque. Destaca-se a localização de pontos de redução de velocidade causada por saturação veicular.

A Figura 27 apresenta o mapa de velocidades para o período da manhã. Pode-se observar que as menores velocidades são registradas na malha viária circundante à região central da área de estudo e na malha viária de acesso e saída das pontes. Nota-se que as maiores velocidades são registradas no decorrer das BR-101 e 282. Destaca-se também que, para as vias arteriais estudadas, foram observadas algumas velocidades menores que 10 km/h.

Figura 27 - Mapa de velocidades observadas: período manhã

No continente observou-se que para o par viário Av. Presidente Kennedy – Av. Acioni Souza Filho e na Av. Marinheiro Max Schramm, no sentido da ilha, as velocidades de tráfego são menores do que as velocidades da rodovia BR-101 até sua conexão com a BR-282. O detalhe da região encontra-se nos mapas da Figura 28.

Na Figura 29 apresenta-se o detalhe dos dados medidos para a região central da ilha. Neste caso destacam-se a Rua Bocaiuva e a Av. Rio Branco, localizadas no interior da zona central, como as vias com menores velocidades observadas. Pode-se perceber o efeito causado por cruzamentos viários na velocidade de fluxo. Para o caso do fim da Av. Beira Mar Norte, no encontro com a Av. Beira Mar Sul, pode-se observar uma queda na velocidade medida.

No período da tarde é relevante observar a diminuição da velocidade em algumas vias (Figura 30). Destacam-se os valores registrados na ponte de saída da ilha, abaixo de 20 km/h. Outro aspecto é a redução de velocidade nas vias Av. Beira Mar Norte, Av. Mauro Ramos e Rua Deputado Antônio Edu Vieira, limitando assim a conexão entre a região norte e a região sul da ilha.

Na região central do continente ressalta-se a baixa velocidade observada na Rodovia BR-282. Este eixo de saída e conexão com a BR-101 apresenta um longo trecho com velocidades menores que 10 km/h, principalmente no cruzamento com a Av. Presidente Kennedy e com a BR-101. Os dados observados para a região são apresentados no mapa da Figura 31.

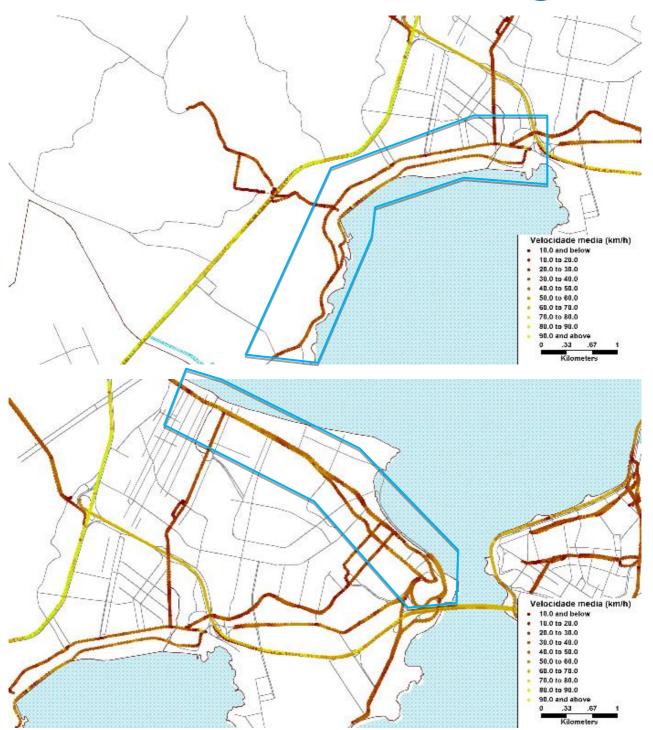


Figura 28 - Mapas de velocidades observadas: detalhe do centro do continente - período manhã

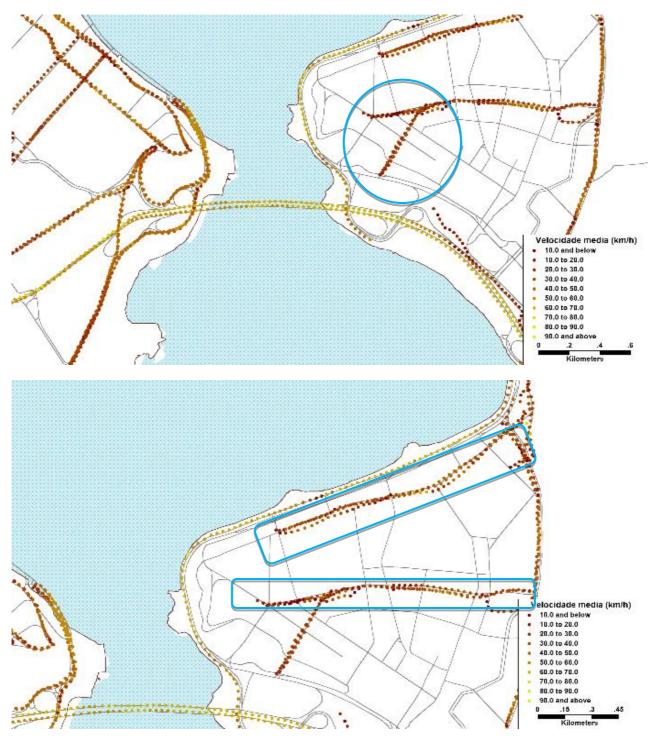


Figura 29 - Mapas de velocidades observadas: detalhe do centro da ilha - período manhã

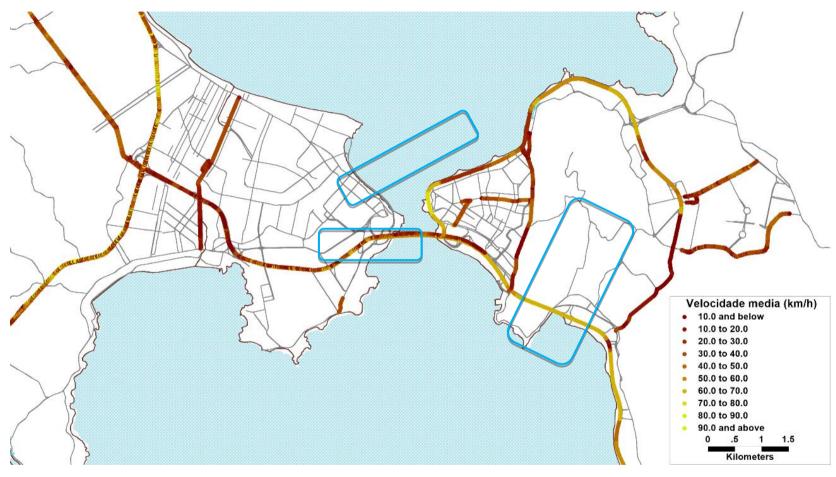


Figura 30 - Mapa de velocidades observadas: período da tarde

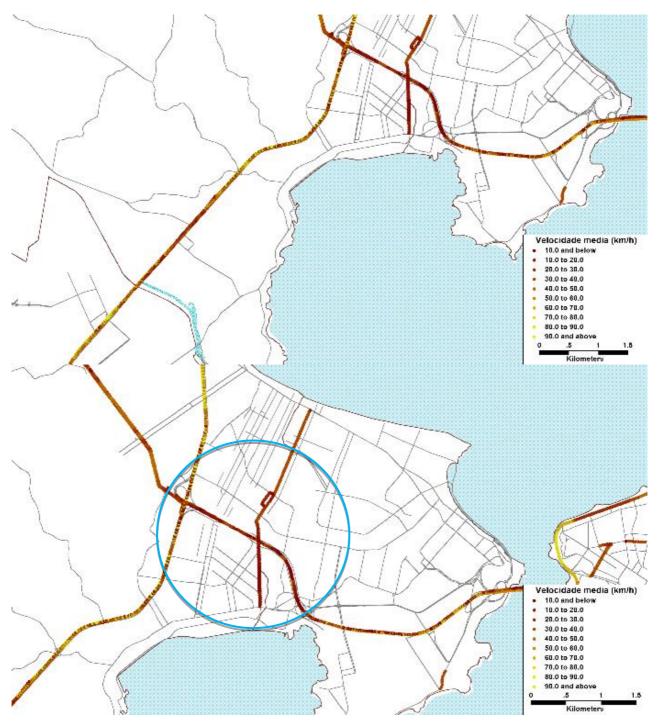


Figura 31 - Mapa de velocidades observadas: detalhe do centro do continente - período tarde

5. Análise da relação volume / capacidade

Dentro do processo de modelagem de transporte, a estimativa do tempo de viagem é um parâmetro fundamental no critério para seleção dos trajetos. Este tempo depende do tempo de viagem com fluxo livre (sem congestionamento) e das demoras devido aos congestionamentos.

O cálculo da demora considera penalidades nos arcos (*links*). Os *links* têm características geométricas (número de faixas e alinhamentos horizontal e vertical) que afetam a determinação de sua capacidade. Quanto maior a utilização da via, maior será a quantidade de interferências e consequente diminuição de seu fluxo. Ou seja, quanto mais utilizada for a via, pior será o seu desempenho e maior será o tempo gasto para um veículo percorrê-la. Esta relação é dada pelas funções de fluxo-demora.

5.1. Estimativa de demora pela saturação

As funções fluxo-demora (VDF - *Volume delay function*) basicamente estimam o tempo de viagem para uma determinada relação de saturação (volume/capacidade). Aplica-se a todos os *links* a função *Bureau of Public Roads* (BPR).

A fórmula abaixo mostra a equação de demora no link e a Tabela 10 indica a descrição de cada termo da equação.

$$t(v) = t_0 \left(1 + \alpha \left(\frac{v}{c} \right)^{\beta} \right)$$

Tabela 10 - Componentes da função fluxo-demora nos links

Variável	Descrição
<i>t</i> (<i>v</i>)	Demora
t_0	Tempo em fluxo livre
v	Volume, veículos equivalentes por hora
c	Capacidade, em veículos equivalentes por hora
α, β	Parâmetros a serem estimados

O tempo em fluxo livre, t_0 , é o tempo que um veículo levaria para percorrer um *link* se estivesse em velocidade de fluxo livre. A velocidade de fluxo livre é aquela desenvolvida pelos veículos quando não há fluxos que causem interferências. Ou seja, a velocidade possível para um trecho que não está congestionado.

Como exemplo tem-se o *link* de ID 34300, que representa um trecho da Rua Joaquim Nabuco, no município de Florianópolis. Os valores obtidos para esse *link* estão apresentados na Tabela 11.

Tabela 11 - Exemplo de parâmetros de uma função de fluxo-demora

Parâmetro	Valor
Extensão	0,21 km
Velocidade de fluxo livre	45 km/h
t_0	0,280 min
α	1,11
β	5

A Figura 32 mostra o gráfico representativo da função fluxo-demora para este exemplo. As abscissas representam a relação $^v/c$ (volume/capacidade) e as ordenadas a velocidade. Neste caso a perda significativa de velocidade se dá para valores de $^v/c$ maiores de 0,6, já que se trata de uma via coletora.

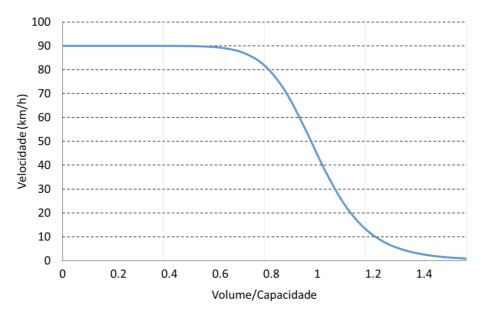


Figura 32 - Gráfico exemplo função fluxo-demora

Para o caso específico da Grande Florianópolis, tem-se informação de estudos que identificam o fluxo (contagem) e a velocidade (pesquisa de velocidades) por ponto, sentido e faixa. Esses registros permitem realizar uma primeira aproximação dos parâmetros alpha e beta, cujos valores podem ser ajustados posteriormente no processo de alocação.

5.2. Definição de parâmetros para as funções de fluxo-demora

Cada hierarquia viária possui algumas tipologias identificadas e descritas anteriormente (Tabela 7). As tipologias caracterizam a função de fluxo-demora, isto é, cada tipologia possui uma capacidade, uma velocidade de fluxo livre, um alpha e um beta próprios. O TransCAD adota como configuração inicial $\alpha=0.15$ e $\beta=4.0$. A Tabela 12 apresenta as velocidades de fluxo livre para cada tipologia.

Tabela 12 - Velocidades tipologias

Tipologia	Hierarquia	Velocidade Fluxo Livre (km/h)
1	_	100
2	Expressa	100
3	_	80

Tipologia	Hierarquia	Velocidade Fluxo Livre (km/h)
3	_	60
4		60
5		80
10	_	80
11		70
12		60
13		50
14	Arterial —	40
15		30
16		60
17		50
18	_	40
19	_	30
20		25
30		45
31	_	35
32	Coletora	25
33	. <u> </u>	25
34		20
40	. <u> </u>	25
41	Local	15
42		10

A cada um dos pontos nos quais foram realizadas contagens, foi associada a velocidade de veículo privado obtida a partir dos estudos de velocidade. Para cada um desses registros, se obteve o horário da medição de velocidade e o volume do fluxo veicular do ponto no mesmo horário. Dessa mesma maneira, foi associada a capacidade da via detectada e descrita anteriormente.

Com esses registros, foi possível estabelecer a relação volume/capacidade associada, assim como contrapor esse valor à velocidade de passagem do veículo. Estes valores todos foram comparados com a curva teórica obtida a partir dos parâmetros descritos no HCM. Essa comparação pode ser observada na Figura 33, que mostra os resultados para as vias coletoras de tipologia 30. Observase que a curva teórica é coerente com o comportamento dos dados observados em campo para esta tipologia.

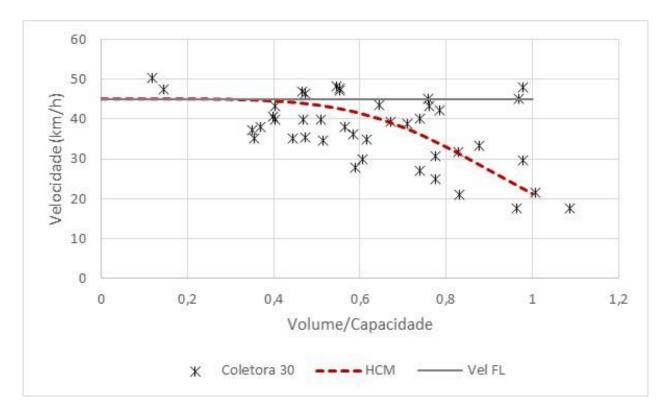


Figura 33 - Função VFD e dados observados da relação volume capacidade e velocidade para coletora tipologia 30

Os parâmetros alpha e beta serão refinados durante o processo de calibração do modelo de alocação de viagens na rede viária, tendo em vista que estes definem o comportamento dos fluxos veiculares em relação à saturação da rede.

6. Parâmetros de capacidade e velocidade

Em síntese, os conceitos utilizados no refinamento da hierarquização supracitada foram:

- Via expressa: via rápida com função de conectar regiões mais distantes, alta capacidade, interseções em desnível e controle de acesso;
- Arterial: proibição de estacionamento nos trechos de maior volume de tráfego, ligando regiões distintas da área urbana. Classificação separada entre vias semaforizadas e não semaforizadas; vias com dois sentidos de circulação e pistas separadas; e vias com alta declividade e baixa declividade;
- Coletora: vias com função de acesso a vias arteriais ou expressas, ou ligação entre bairros próximos. Classificação separada entre vias semaforizadas e não semaforizadas; vias com dois sentidos de circulação e pistas separadas;
- Local: via exclusivamente de acesso ao sistema viário principal. As ruas locais devem ter baixa velocidade privilegiando pedestres e bicicletas.

Como resultado do trabalho de refinamento de hierarquias e tipologias apresenta-se a Tabela 13, com todos os parâmetros e características para cada uma das tipologias adotadas.

Tabela 13 - Parâmetros tipologias

Tipologia	Hierarquia	Velocidade (km/h)	Capacidade (veic/h/faixa)	Capacidade com semáforo (veic/h/faixa)
1	Expressa	100	2.200	
2	Expressa	100	2.100	
3	Expressa	80	1.900	
3	Expressa	60	1.900	
4	Expressa	60	1.600	
5	Expressa	80	1.800	
10	Arterial	80	1.900	855 – 1.045
11	Arterial	70	1.800	810 - 990
12	Arterial	60	1.700	765 - 935
13	Arterial	50	1.500	675 - 825
14	Arterial	40	1.300	585 - 825
15	Arterial	30	1.200	540 - 825

Tipologia	Hierarquia	Velocidade (km/h)	Capacidade (veic/h/faixa)	Capacidade com semáforo (veic/h/faixa)
16	Arterial	60	1.500	675 - 825
17	Arterial	50	1.300	585 - 825
18	Arterial	40	1.100	495 - 825
19	Arterial	30	1.000	450 - 675
20	Arterial	25	900	405 - 608
30	Coletora	45	900	450 - 675
31	Coletora	35	700	450 - 675
32	Coletora	25	700	450 - 675
33	Coletora	25	630	405 - 608
34	Coletora	20	490	315 - 473
40	Local	25	500	390 - 585
41	Local	15	500	390 - 585
42	Local	10	400	273 - 410

A Tabela 14 mostra o comprimento total de vias, para cada hierarquia.

Tabela 14 - Extensão total de vias por hierarquia

Hierarquia	Extensão total (km)	Porcentagem
Expressa	344	7%
Arterial	555	12%
Coletora	538	12%
Local	3.205	69%
Total	4.642	100%

O mapa da Figura 34 mostra a hierarquização da região, e o mapa da Figura 35 mostra uma ampliação da área central.

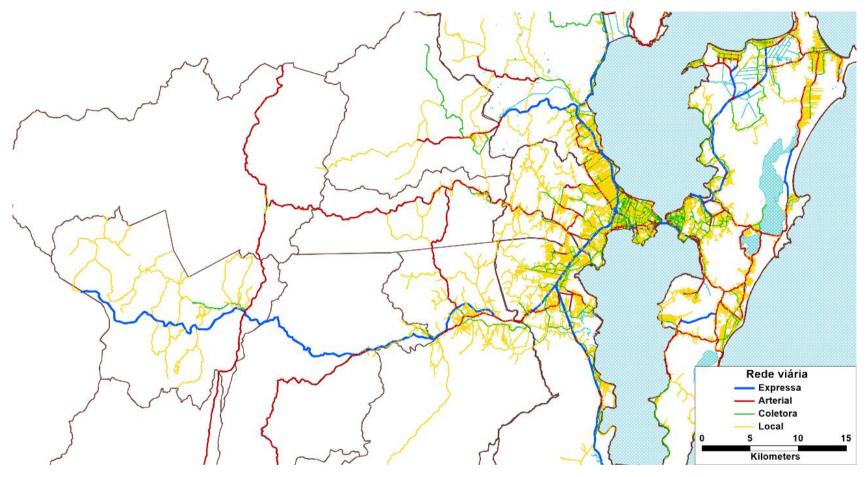


Figura 34 - Hierarquia viária - Grande Florianópolis

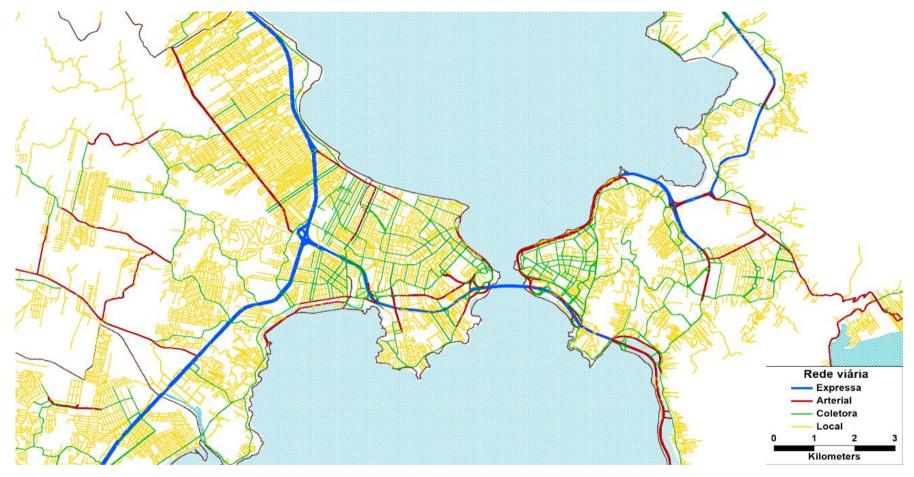


Figura 35 - Hierarquia viária - centro de Florianópolis

7. Análise dos tempos de percurso dos usuários

Tendo a informação de velocidades (de fluxo livre) carregadas na rede, é possível comparar as escolhas de rotas, considerando a menor distância ou o menor tempo. A distância é dada pelo próprio *link* da rede. O tempo de cada *link* foi obtido a partir da velocidade de fluxo livre.

Tipicamente, otimização de tempo e otimização de distâncias resultam em rotas diferentes, pois as rotas que minimizam distâncias tendem a utilizar mais as vias locais, com velocidade menor. Quando se considera o tempo, as rotas podem ficar um pouco mais longas, porém utilizam vias com velocidades maiores, de forma a obter um tempo menor.

7.1. Estimativa de caminhos mínimos

O mapa da

Figura 36 mostra as rotas otimizadas do centro de Florianópolis para Palhoça. A rota em verde considera o menor tempo possível entre os dois pontos, enquanto a rota em vermelho minimiza a distância entre os dois pontos. A Tabela 15 mostra os ganhos obtidos para cada rota.

Figura 36 - Rotas Florianópolis-Palhoça

Tabela 15 - Rotas Florianópolis-Palhoça

Origem	Florianópolis	
Destino	Palhoça	
	Distância (km)	Tempo (min)
Minimizando Distância	15,4	18,6
Minimizando Tempo	17,7	13,6
Redução	15%	37%

Neste caso, nota-se que os caminhos traçados para ir de Florianópolis à Palhoça diferem de acordo com o critério escolhido. O caminho que passa pelas rodovias BR-282 e pela BR-101 é o mais rápido, já o caminho mais curto passa pela Av. Acioni Souza Filho (35% mais curto), embora requeira 37% a mais de tempo para se completar a viagem.

O mapa da Figura 37 mostra as rotas otimizadas com origem no centro de Florianópolis e destino em Biguaçu.

Figura 37 - Rotas Florianópolis-Biguaçu

A Tabela 16 mostra os ganhos obtidos para cada otimização de rotas com origem em Florianópolis e destino em Biguaçu.

Tabela 16 - Rotas Florianópolis-Biguaçu

Origem	Florianópolis	
Destino	Biguaçu	
	Distância (km)	Tempo
	Distancia (Kili)	(min)
Minimizando Distância	20,7	27,3
Minimizando Tempo	23,1	17,6
Redução	12%	55%

Efeito similar ocorre na estimativa do caminho mínimo para as viagens Florianópolis-Biguaçu. Neste caso, a redução do tempo gerada pelo caminho mais rápido em comparação ao caminho mais curto é ainda maior: 55%.

A Figura 38 mostra as rotas com origem na Barra da Lagoa e destino em Jurerê. A Tabela 17 mostra os ganhos obtidos nas otimizações entre Barra da Lagoa e Jurerê.

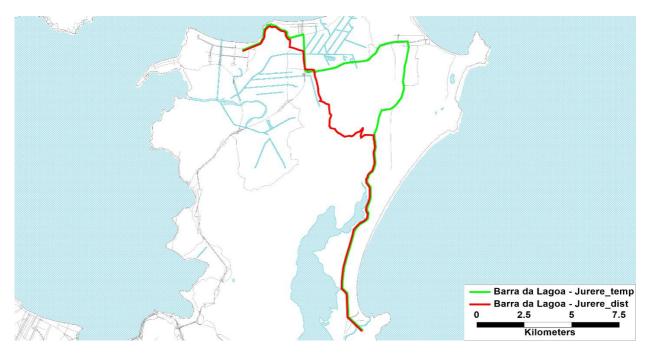


Figura 38 - Rotas Barra da Lagoa-Jurerê

Tabela 17 - Rotas Barra da Lagoa-Jurerê

Origem	Barra da Lagoa				
Destino	Jurerê				
	Distância (km)	Tempo			
	Distancia (Kili)	(min)			
Minimizando Distância	23,7	39,0			
Minimizando Tempo	28,3	27,1			
Redução	19%	44%			

A diferença de rotas minimizando tempo e distância nesse percurso fica evidente mais uma vez. A rota pela distância mais curta utiliza a Estrada Cristóvão Machado de Campos, mas o menor tempo se obtém utilizando a Rodovia SC-406, com uma redução de 44%.

7.2. Matrizes de tempo e distância de viagem

Da mesma forma que foram estimados os caminhos entre dois pontos com base no mínimo tempo ou na mínima distância, foram estimados os caminhos mínimos (por tempo e distância) entre todas as zonas da área de estudo.

Conforme exposto na seção 2.1.1, existem 327 zonas de análise de tráfego. Foram estimados os tempos e distâncias em percursos de cada uma destas zonas para as demais 326 zonas. Como cada zona é representada por um ponto, os tempos e distâncias dos caminhos saindo e chegando na mesma zona (viagens intrazonais) sempre serão iguais a zero para esta análise.

Para avaliação dos caminhos considerando o critério de mínimo tempo são utilizadas as velocidades de fluxo livre. A Tabela 18 apresenta a média e a mediana de tempos e distâncias estimados para os caminhos, em condições de fluxo livre, na região de estudo.

Tabela 18 - Média, mediana e desvio padrão caminhos mínimos área estudo

Combinações	106.929	
Tempo médio	28,80	Minutos
Mediana de Tempo	21,57	Minutos
Desvio padrão	19,68	Minutos
Distância média	22,50	Quilômetros
Mediana de Distância	16,97	Quilômetros
Desvio padrão	16,33	Quilômetros

A informação obtida é representada na forma de matrizes de tempos e distâncias. A seguir são apresentados os principais resultados.

7.2.1. Tempo mínimo entre zonas

Os tempos entre zonas são apresentados em um histograma na Figura 39. Os dados se distribuem com uma média de 28,8 minutos e mediana de 21,6 minutos, com concentração de dados no lado esquerdo da curva.

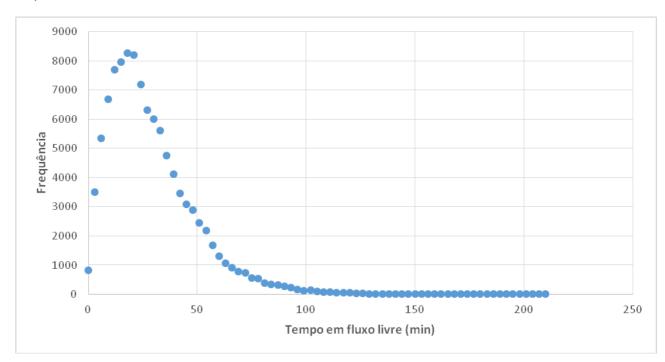


Figura 39 - Histograma de tempo mínimo entre zonas

A matriz de tempos mínimos mostra o menor tempo possível para caminhos entres todas as zonas. A título de ilustração, apresentam-se na matriz na Figura 40 os valores estimados diferenciados por gradação de cor, de forma que caminhos com tempos menores que 1 minuto estão em azul, em branco os tempos iguais à mediana (21,6 minutos) dos dados e em vermelho os valores iguais ou superiores a 60 minutos. Os dados com valores intermediários são representados com tonalidades intermediárias.

Os dados estão agrupados por município, segundo o código cromático da Tabela 19, e ordenados alfabeticamente. Ao centro do conjunto de dados do município de Florianópolis destaca-se a área representativa da zona central da ilha de Santa Catarina.

Tabela 19 - Código cromático: representação de matrizes de tempos e distâncias

ÁGUAS MORNAS	
ANGELINA	
ANITÁPOLIS	
ANTÔNIO CARLOS	
BIGUAÇU	
FLORIANÓPOLIS	
GOVERNADOR CELSO RAMOS	
PALHOÇA	
RANCHO QUEIMADO	
SANTO AMARO DA IMPERATRIZ	
SÃO BONIFÁCIO	
SÃO JOSÉ	
SÃO PEDRO DE ALCÂNTARA	

Dessa forma pode-se observar a interação entre os municípios. Nos casos em que se observa saturação da cor vermelha, tempos maiores que 60 minutos são generalizados entre as zonas de ambos os municípios. Os casos em que se observa saturação de cor azul, tempos próximos a 1 minuto são generalizados entre as zonas de ambos os municípios.

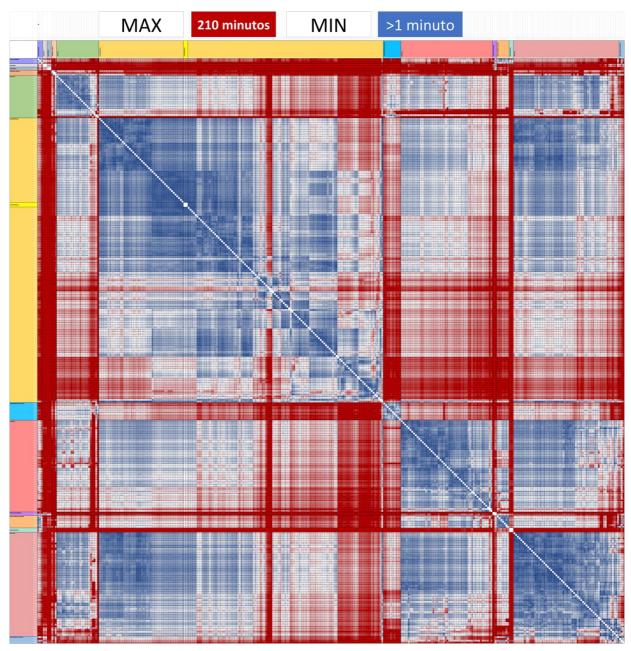


Figura 40 - Matriz de tempos mínimos - 327 zonas da área de estudo

Na Figura 41 apresenta-se o resumo dos valores para cada município. Neste caso, pode ser observada a interação entre cada município, com valores médios para o conjunto de valores entre as zonas compreendidas em cada município. Foi estimado, por exemplo, que o tempo mínimo

médio para os caminhos internos ao município de Florianópolis, em velocidade de fluxo livre, é de 19 minutos.

	ÁGUAS MORNAS	ANGELINA	ANITÁPOLIS	ANTÔNIO CARLOS	BIGUAÇU	FLORIANÓPOLIS	GOVERNADOR CELSO RAM	РАІНОСЯ	RANCHO QUEIMADO	SANTO AMARO DA IMPER	SÃO BONIFÁCIO	SÃO JOSÉ	SÃO PEDRO DE ALCÂNTA	Media de tempo de viagem em fluxo livre das viagens com Origen no municipio
ÁGUAS MORNAS	19	37	44	66	64	57	69	40	38	19	29	46	49	44
ANGELINA	37		35	63	76	72	91	71	30	60	57	59	31	57
ANITÁPOLIS	44	35		98	90	88	100	71	37	50	64	78	60	68
ANTÔNIO CARLOS	66	63	98	21	36	68	64	70	93	84	93	47	38	65
BIGUAÇU	60	77	86	36	15	35	31	34	81	47	87	21	52	51
FLORIANÓPOLIS	56	74	87	71	34	19	49	33	81	41	82	25	47	54
GOVERNADOR CELSO RAM	64	86	96	46	28	50	12	42	90	50	91	36	62	58
PALHOÇA	37	71	69	70	37	32	44	11	63	23	64	18	41	45
RANCHO QUEIMADO	38	30	37	93	85	83	95	66	25	45	58	72	54	60
SANTO AMARO DA IMPER	18	60	50	84	49	41	53	24	44	7	45	30	36	42
SÃO BONIFÁCIO	29	57	64	93	91	84	95	67	58	45		73	75	69
SÃO JOSÉ	43	60	74	52	24	24	40	18	69	29	70	10	33	42
SÃO PEDRO DE ALCÂNTA	48	31	60	38	52	46	66	41	54	35	75	33	14	46
Media de tempo de viagem em fluxo livre das viagens com destino no municipio	43	57	67	64	52	54	62	45	59	41	68	42	46	

Figura 41 - Matriz de tempos mínimos médios por municipio

7.2.2. Distância mínima entre zonas

As distâncias mínimas entre zonas são representadas no histograma da Figura 42. Os dados são distribuídos com uma média de 22,50 quilômetros e mediana de 16,97 quilômetros, com concentração de dados ao lado esquerdo da curva.

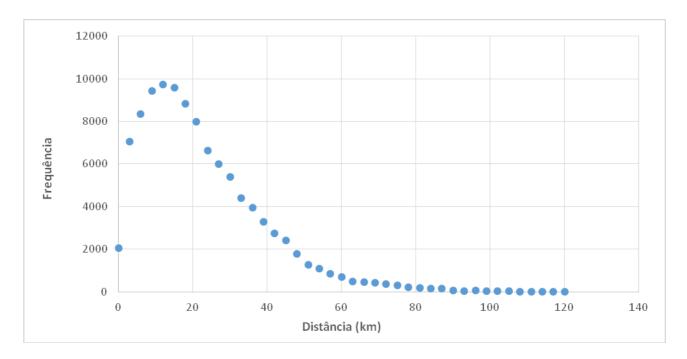


Figura 42 - Histograma de distância mínima entre zonas

A matriz de distâncias mínimas contém a menor distância possível para todos caminhos entre todas as zonas. A título de ilustração, são apresentados na matriz na Figura 43 os valores estimados com gradação de cor, de forma que os caminhos com distâncias menores a 1 quilômetro são mostrados em azul, em branco as distâncias iguais à mediana (16,97 quilômetros) dos dados e em vermelho os valores iguais ou superiores a 48 quilômetros. Os dados com valores intermediários são representados com tonalidades intermediárias.

Os dados estão agrupados por município, segundo o código cromático da Tabela 19, e ordenados alfabeticamente, da mesma maneira que os dados da matriz de tempos. Ao centro do conjunto de

dados do município de Florianópolis destaca-se a zona representativa da área central da Ilha de Santa Catarina.

Pode-se observar assim a interação entre os municípios. Nos casos em que se observa saturação da cor vermelha, as distâncias maiores que 48 quilômetros são generalizadas entre as zonas de ambos os municípios. Nos casos em que se observa saturação da cor azul, distâncias próximas a 1 quilômetro são generalizadas entre as zonas de ambos os municípios.

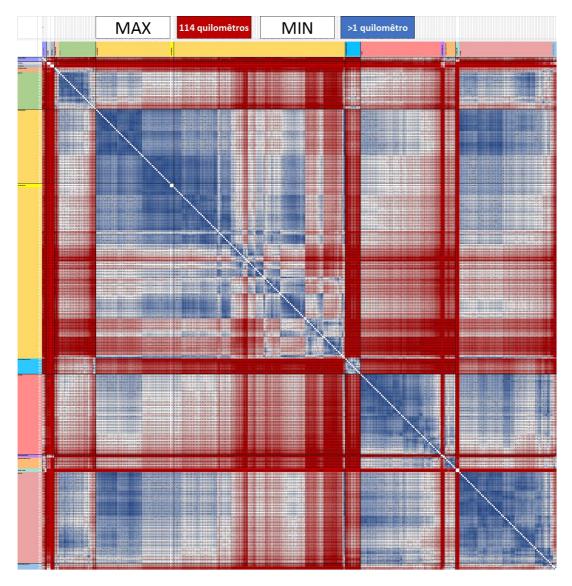


Figura 43 - Matriz de distâncias mínimas: 327 zonas da área de estudo

A Figura 44 apresenta o resumo dos valores para cada município. Nesse caso pode-se observar a interação entre cada município, com médias para o conjunto de valores entre as zonas compreendidas em cada município. No caso de Florianópolis, exemplo, foi estimado que a distância mínima média para os caminhos internos ao município é de 15 quilômetros.

origem nome	ÁGUAS MORNAS	ANGELINA	ANITÁPOLIS	ANTÔNIO CARLOS	вівидся	FLORIANÓPOLIS	GOVERNADOR CELSO RAM	РАІНОСЯ	RANCHO QUEIMADO	SANTO AMARO DA IMPER	SÃO BONIFÁCIO	são José	SÃO PEDRO DE ALCÂNTA	Media de distância das viagens com Origen no municipio
ÁGUAS MORNAS	16	37	46	49	50	53	72	31	30	18	29	39	32	39
ANGELINA	37		37	44	55	65	76	48	20	36	61	49	26	46
ANITÁPOLIS	46	37		81	86	89	108	67	30	54	70	75	63	67
ANTÔNIO CARLOS	49	44	81	10	21	44	42	30	64	32	78	27	19	41
BIGUAÇU	50	55	86	22	8	27	25	24	70	33	79	13	29	40
FLORIANÓPOLIS	52	65	88	44	27	15	48	26	72	35	81	18	39	47
GOVERNADOR CELSO RAM	73	75	109	41	25	49	9	46	92	56	101	35	49	58
PALHOÇA	31	48	67	30	24	26	46	6	51	14	59	12	22	33
RANCHO QUEIMADO	30	20	29	64	70	72	92	51	7	37	54	59	46	49
SANTO AMARO DA IMPER	18	36	54	32	33	36	55	14	37	4	46	22	17	31
SÃO BONIFÁCIO	29	61	70	78	79	81	101	59	54	46		67	61	66
SÃO JOSÉ	39	49	75	27	13	18	35	12	58	22	67	5	23	34
SÃO PEDRO DE ALCÂNTA	32	26	63	19	29	39	50	22	46	17	61	23	9	34
Media de distância das viagens com destino no municipio	39	46	67	41	40	47	59	33	49	31	66	34	33	

Figura 44 - Matriz de distâncias minimas médias municipio

7.3. Análise de acessibilidade por zona

Utilizando o mesmo procedimento que gerou as matrizes por zona, isto é, procurando o caminho que minimiza o tempo ou o caminho que minimiza a distância entre dois pontos da rede, obtevese os percursos com destino em todos os nós da rede, que representam intersecções viárias, e com origem em alguns pontos de maior interesse na área de estudo.

A Figura 45, a Figura 46, a Figura 47, a Figura 48, a Figura 49, a Figura 50 e a Figura 51 mostram os mapas com os tempos representados por escala cromática, para diferentes origens dos caminhos. O mapa em vermelho considera a cobertura, por faixas de tempo, para os caminhos com a menor distância possível, enquanto o mapa em verde considera a cobertura, também por faixas de tempo, para os caminhos com o mínimo tempo possível. Ambos os mapas mostram o tempo resultante dos caminhos, em minutos.

Observa-se na Figura 45, por exemplo, que a maior parte da região do estudo pode ser alcançada em menos de 20 minutos, em velocidade de fluxo livre, minimizando o tempo do caminho. Esta área atingível em menos de 20 minutos, entretanto, se reduz quando se considera o critério de mínima distância.

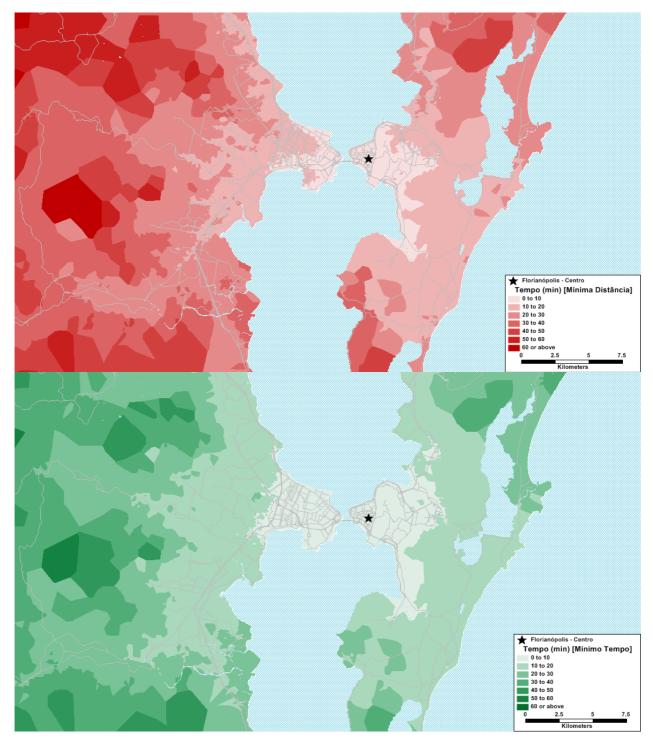


Figura 45 – Tempo: origem centro Florianópolis

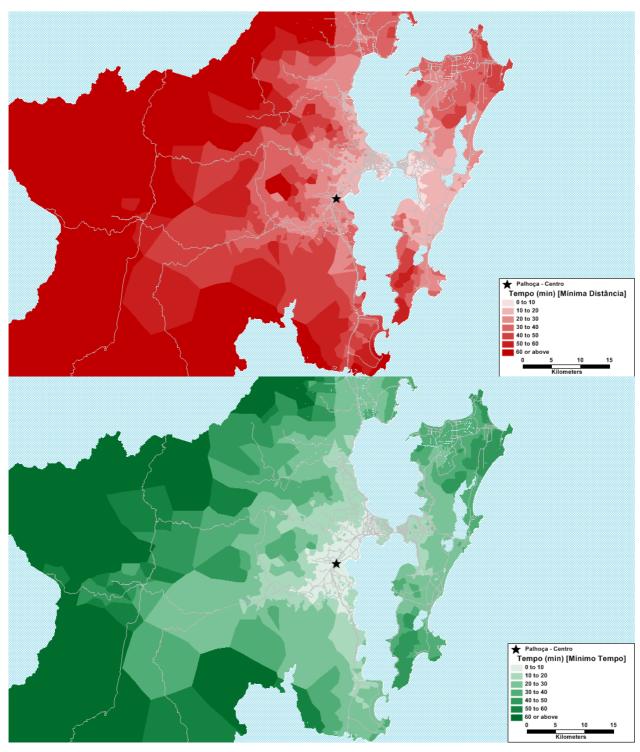


Figura 46 – Tempo: origem centro de Palhoça

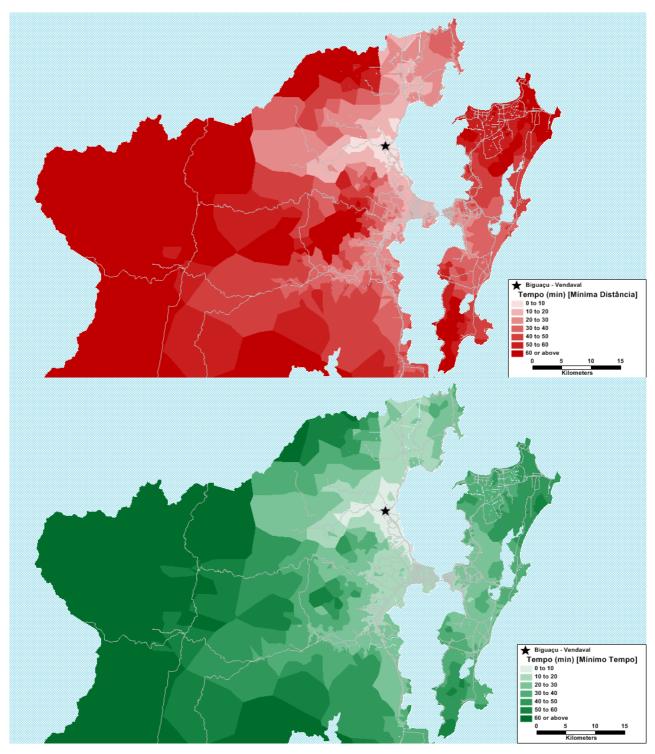


Figura 47 – Tempo: origem centro de Biguaçu

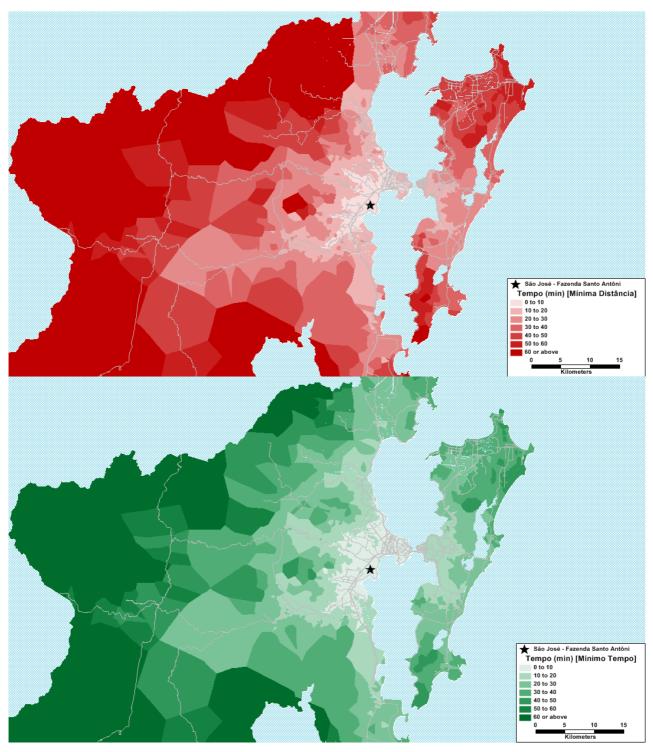


Figura 48 – Tempo: origem centro de São José



Figura 49 – Tempo: origem UFSC

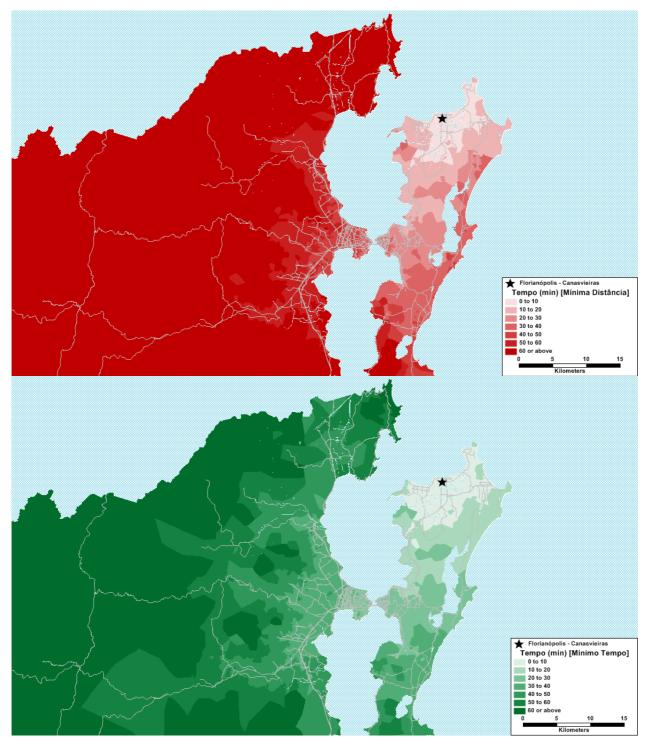


Figura 50 – Tempo: origem Canasvierias

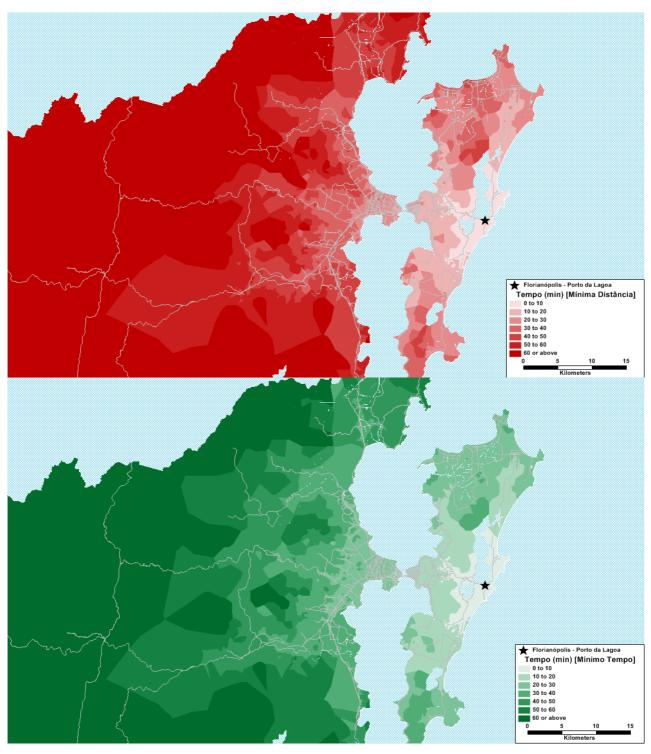


Figura 51 – Tempo: origem Porto da Lagoa

Observa-se que os tempos dos percursos são proporcionais e coerentes entre as regiões quando se minimiza o tempo ou a distância, havendo diferenças principalmente nas áreas próximas às origens dos caminhos, onde a oferta viária faz com que a escolha de percursos que minimizem a distância seja diferente dos que minimizem o tempo. Para regiões mais afastadas das origens, existem menos possibilidades de caminhos diferentes (menos oferta viária), o que faz com que o tempo dos percursos pelos critérios de mínimo tempo e mínima distância tendam a não ser muito diferentes.

